

Canada's national laboratory for particle and nuclear physics and accelerator-based science

# T2K and HyperK

Akira Konaka (TRIUMF/UVic) June 15 @ CAP2018 IPP AGM

#### Hyper-Kamiokande



- 187kton (fid.) water Chrenkov
  - 8 times SuperK
- Physics goal
  - precision v oscillation
    - long baseline
    - atmospheric
  - neutrino astronomy
    - supernova neutrino
    - solar neutrino
  - new physics
    - nucleon decays
    - dark matter
- Funding expected this year
  - baseline built by Japan
  - international contributions
    - enhanced photosensor
    - near detector

$$\begin{array}{c} v_{\text{CKM}} \sim \\ \text{(Quarks)} \end{array} \begin{pmatrix} 1 &_{0.2} &_{_{0.001}} \\ 0.2 & 1 &_{0.01} \\ &_{_{0.001}} & 0.01 & 1 \\ \end{pmatrix}$$

$$\begin{array}{c} V_{PMNS} \sim \\ \text{(Leptons)} \end{array} \quad \begin{pmatrix} 0.8 \; 0.5 \; \text{o.2} \\ 0.4 \; 0.6 \; 0.7 \\ 0.4 \; 0.6 \; 0.7 \end{pmatrix}$$

- Lepton mixing is large and neutrino masses are small
  - different origin from Higgs Yukawa coupling?
    - see-saw mechanism
  - could explain baryon asymmetry
    - Leptogenesis



solar, Kamland, reactor, JUNO 
$$|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1$$
 HK atmospheric, long baseline 
$$|U_{\mu 1}|^2 + |U_{\mu 2}|^2 + |U_{\mu 3}|^2 = 1$$

$$U_{e1}U^*_{\mu 1}+U_{e2}U^*_{\mu 2}+U_{e3}U^*_{\mu 3}=0$$



All sides and angles are in principle accessible



$$P_{\ell o \ell'} = 4ab \sin(\Delta_{12} \pm \gamma) \sin \Delta_{12} \ + 4bc \sin(\Delta_{23} \pm \alpha) \sin \Delta_{23} \ + 4ac \sin(\Delta_{31} \pm \beta) \sin \Delta_{31}$$

 $\Delta_{13}$ :  $\beta \sim \delta_{cp}$ 

 $\Delta_{12}$ :  $\gamma \sim \delta_{\text{subGeV-atm}}$ 

 $\Delta_{23}$ :  $\alpha \sim \delta_{\text{nth-max}}$ 

HK long baseline, atmospheric

- Solar neutrino: IU<sub>e2</sub>I<sup>2</sup>
  - -MSW conversion in the sun: v<sub>e</sub>→v<sub>2</sub> and detect v<sub>e</sub>
- KamLand:  $|U_{e1}|^2 |U_{e2}|^2$ 
  - Reactor  $v_e$  disapp. at  $\Delta_{12}$  scale
- Reactor  $\theta_{13}$ :  $|U_{e3}|^2 (|U_{e1}|^2 + |U_{e2}|^2)$ 
  - Reactor  $v_e$  disapp. at  $\Delta_{13}$  scale
- All the parameters are measured:
  - Precision measurement of all IU<sub>e1</sub>I<sup>2</sup>IU<sub>e2</sub>I<sup>2</sup>, IU<sub>e2</sub>I<sup>2</sup>IU<sub>e3</sub>I<sup>2</sup>, IU<sub>e3</sub>I<sup>2</sup>IU<sub>e1</sub>I<sup>2</sup> expected by JUNO



 $(\Delta_{13}-\Delta_{23}) \sim 0.03 \, \Delta_{23}$  at 1st osci. max  $(\Delta_{13}-\Delta_{23}) \sim 0.3 \, \Delta_{23}$  at 10th osci. max

- LBL  $v_{\mu}$  disapp:  $IU_{\mu 3}I^{2}$  ( $IU_{\mu 1}I^{2} + IU_{\mu 2}I^{2}$ )
  - -T2K/NOvA/HK/DUNE measure this.
- $v_{\mu} \rightarrow v_{e}$  atm. matter resonance:  $(rIU_{\mu3}I^{2} 1)$ 
  - v mass hierarchy (~6GeV) [SK,HK]
- Solar scale atm.  $v_{\mu}$  disapp. :  $IU_{\mu 1}I^{2}IU_{\mu 2}I^{2}$ 
  - -0.4-0.8GeV up-going atm.  $v_{\mu}$  disapp.
  - -anti- $v_{\mu}$  (neutron tag) has directionality
    - -SK-Gd would help this
- 1-3GeV atm.  $v_{\mu}$  disapp.:  $IU_{\mu 1}I^2 / IU_{\mu 2}I^2$ 
  - -4-6th oscl. max: phase shift btw  $\Delta_{13}\&\Delta_{23}$
  - T2HKK (Korean detector) can do this as well







T2K/HyperK case:

At the peak of E<sub>v</sub>=0.6GeV 
$$\frac{Prob(\nu_{\mu} \rightarrow \nu_{e}) - Prob(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})}{Prob(\nu_{\mu} \rightarrow \nu_{e}) + Prob(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})} \simeq -0.28 \sin \delta_{CP} + 0.07$$
 matter effect

 $\Delta_{23}$  and  $\Delta_{31}$ : sensitive to sum of  $\alpha$  and  $\beta$  angle contributions



#### CP violation in atmospheric neutrinos



CP effect is not small in particular + 1-4GeV

 $\Delta_{23}$ :  $\alpha \sim \delta_{\text{nth-max}}$ 

+ sub-GeV

 $\Delta_{12}: \gamma{\sim}\delta_{\text{subGeV-atm}}$ 





- Based on 90 v<sub>e</sub> and 9 anti-v<sub>e</sub> appearance candidate events
  - CP conserving  $\delta cp = 0,\pi$  falls out of the  $2\sigma$  range
- Sounds like we are almost there, but not really...
  - central value is in unphysical region beyond maximal CP: lucky statistical fluctuation
  - **Systematic error** of 8.8%(CCQE neutrino) is significant compared to stat. error of 11.5%

#### CP violation sensitivity at Hyper-Kamiokande

- HyperK CP sensitivity will be limited by systematics
  - Improving systematics will be essential
- Systematics does not follow gaussian distribution
  - hard to claim signal assuming gaussian errors of 5σ



HK Sensitivity for  $\delta cp = -\pi/2$  (maximal CP viol.)



#### Systematic uncertainties

|                               | 1-Ri   | $ng \mu$ | 1-Ring $e$ |        |                          |           |  |  |
|-------------------------------|--------|----------|------------|--------|--------------------------|-----------|--|--|
| Error source                  | v mode | ⊽ mode   | v mode     | ⊽ mode | $v \text{ mode } cc1\pi$ | ⊽/ν ratio |  |  |
| SK Detector                   | 2.40%  | 2.01%    | 2.83%      | 3.79%  | 13.16%                   | 1.47%     |  |  |
| SK FSI+SI+PN                  | 2.20   | 1.98     | 3.02       | 2.31   | 11.44                    | 1.58      |  |  |
| Flux + Xsec constrained       | 2.88   | 2.68     | 3.02       | 2.86   | 3.82                     | 2.31      |  |  |
| E <sub>b</sub>                | 2.43   | 1.73     | 7.26       | 3.66   | 3.01                     | 3.74      |  |  |
| $\sigma( u_e)/\sigma(ar u_e)$ | 0.00   | 0.00     | 2.63       | 1.46   | 2.62                     | 3.03      |  |  |
| $NC1\gamma$                   | 0.00   | 0.00     | 1.07       | 2.58   | 0.33                     | 1.49      |  |  |
| NC Other                      | 0.25   | 0.25     | 0.14       | 0.33   | 0.99                     | 0.18      |  |  |
| Osc                           | 0.03   | 0.03     | 3.86       | 3.60   | 3.77                     | 0.79      |  |  |
| All Systematics               | 4.91   | 4.28     | 8.81       | 7.03   | 18.32                    | 5.87      |  |  |
| All with osc                  | 4.91   | 4.28     | 9.60       | 7.87   | 18.65                    | 5.93      |  |  |

- Taking the ratio with the near detector cancels systematics
  - similar to "side band"
  - limited due to difference in flux shape due to oscillation
- Source of systematics
  - Detector (SK) efficiency
  - Flux
  - cross section

- Systematic uncertainties improved over the years but started to be limited
  - easy to improve ones are already done
  - cross section systematics is challenging
    - theoretical uncertainties
    - binding energy Eb is introduced this year



#### Challenge in the neutrino cross section

- Primary interaction
  - Nucleon form factor
  - Multi-nucleon effects
- Initial nucleons
  - initial nucleon momentum
    - Random Phase Approximation?
    - Binding energy?
- Final State Interaction
  - nucleon traveling nucleus
    - Cascade model? (traveling like real particle)
  - energy-momentum conservation?
- Neutrino challenge
  - initial neutrino energy not known



Similar challenge in electron and pion scatterings

Model tuning at a few% level has limitations

#### Solving cross section systematics by E61(NUPRISM)



#### **NUPRISM** linear combination





#### Creating the same shape as far detector



- Precise vertex reconstruction required
  - fiducial error ~1% → 1-2cm in vertex error
    - buoyancy and distortion of the support in water
    - SNO, KamLand, JUNO: ~3cm in vertex error
- Fine granularity
  - multi-PMT with 3-inch PMT's
- Precise in-situ/ex-situ calibration
  - in-situ: photogrammetry (3D reconst. by camera)
    - SNO+ demonstrates 0.5-1cm precision in a pool
  - ex-situ
    - Photosensor test facility: angular response of PMT's
    - Charged particle beam test of a water Cherenkov
      - vertex, hadronic effect, multi-ring reconstruction













Dominated by Hadron production error

#### Compact spectrometer



#### Hadron production experiment in Jan. 2018 @Fermilab











- Confusion in the definition of cross sections
  - e.g. interference terms
  - measure direct information of t=-Q² distribution for hadron production

#### EMPHATIC for the water Cherenkov beam test



#### Timelines

|               | 2017   | 2018 | 2019         | 2020 | 2021      | 2022 | 2023 | 2024 | 2025 | 2026 |
|---------------|--------|------|--------------|------|-----------|------|------|------|------|------|
| T2K/T2K-II/SK |        |      |              |      |           |      |      |      |      |      |
|               |        |      |              |      |           |      |      |      |      |      |
| E61 beam test |        |      |              |      |           |      |      |      |      |      |
| E61 facility  |        |      |              |      |           |      |      |      |      |      |
| E61 detector  |        |      |              |      |           |      |      |      |      |      |
|               |        |      |              |      |           |      |      |      |      |      |
| HK mPMT       |        |      |              |      |           |      |      |      | _    |      |
|               |        |      |              |      |           |      |      |      |      |      |
| Hadron prod.  |        |      |              |      |           |      |      |      |      |      |
|               |        |      |              |      |           |      |      |      |      |      |
|               |        |      |              |      |           |      |      |      |      |      |
|               |        |      |              |      |           |      |      |      |      |      |
|               |        |      |              |      |           |      |      |      |      |      |
|               | design |      | construction |      | operation |      |      |      |      |      |

- Building up neutrino physics community similar to what was achieved in the quark sector (ε'/ε and B-factories)
  - Two leading projects: HyperK (Japan) and DUNE (US)
  - Study of systematic uncertainty is the main driver for success
- Nuclear/hadronic effects are the main systematics
  - NuPRISM (and DUNE-Prism) provides the solution
    - Serious challenges in achieving 1-2% level in detector systematics
      - Photogrammetry (3D reconstruction with digital camera) developed for SNO+
      - Precise calibration at the photosensor test facility (PTF) at TRIUMF
- Experimental programs to address the challenge of systematics
  - E61(NuPRISM) to cancel the cross section systematics
  - Flux (long baseline, atmospheric): EMPHATIC hadron production exp.
  - Detector: E61(NuPRISM) beam test, Photosensor Test Facility
- Exciting future is ahead in neutrino physics
  - Excellent prospect for HyperK funding in 2018



#### HyperK



#### Dual beam



- precision calorimetry
  - fine grained with good resolution
    - Pure CsI (KTeV)
    - Liq. Kr (NA48)



- High statistics data/MC comparison
  - High throughput data and Ntuple got available
    - bump up in test of systematics needed
    - 'Deep learning' would also demand innovation for its test
  - blind analysis also became important
- created a vibrant community
  - many excellent physicists from this





Cancellation of systematic uncertainties

$$Re(\epsilon'/\epsilon) \sim \frac{1}{3} \times \frac{\Gamma(K_L \to \pi^+ \pi^-)/\Gamma(K_S \to \pi^+ \pi^-) - \Gamma(K_L \to \pi^0 \pi^0)/\Gamma(K_S \to \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^-)/\Gamma(K_S \to \pi^+ \pi^-) + \Gamma(K_L \to \pi^0 \pi^0)/\Gamma(K_S \to \pi^0 \pi^0)}$$

- Beam normalization: KL or KS
- Decay modes: π+π- or π<sup>0</sup>π<sup>0</sup>
- Double ratio in neutrino CP measurement

$$\frac{\Phi_{far}(\nu_e)/\Phi_{near}(\nu_\mu) - \Phi_{far}(\bar{\nu}_e)/\Phi_{near}(\bar{\nu}_\mu)}{\Phi_{far}(\nu_e)/\Phi_{near}(\nu_\mu) + \Phi_{far}(\bar{\nu}_e)/\Phi_{near}(\bar{\nu}_\mu)} \simeq \frac{-16J_{CP}\sin\Delta_{21} + 16c_{13}^2s_{13}^2s_{23}^2a/\Delta m_{31}^2}{8c_{13}^2s_{13}^2s_{23}^2}$$

$$\simeq -0.28 \sin \delta_{CP} + (0.07, 0.17, 0.3) [T2K, NO\nu A, DUNE]$$
 at osc. max

- Beam normalization: Φ<sub>far</sub>σ<sub>far</sub>/Φ<sub>near</sub>σ<sub>near</sub>
- Particle types: v or v-bar

#### $|P_{l\to l'}| = |\langle \nu_{l'}(t)|\nu_{l}(t)\rangle|^2$ $= |\Sigma_i < \nu_{l'}|\nu_i > e^{-iE_it} < \nu_i|\nu_l > |^2$ $bc\sin\alpha=ca\sin\beta=ab\sin\gamma=J.$ $= |\Sigma_i U_{li}^* U_{l'i} e^{-im_i^2 L/2E}|^2$



## **Appearance** $P_{\ell \to \ell'} = 4ab \sin(\Delta_{12} \pm \gamma) \sin \Delta_{12}$

 $+4bc\sin(\Delta_{23}\pm\alpha)\sin\Delta_{23}$ 

 $+4ac\sin(\Delta_{31}\pm\beta)\sin\Delta_{31}$ 

 $\Delta_{12} = \Delta m^2_{12} L/4E$ 

 $\Delta_{23} = \Delta m^2_{23} L/4E$  $\Delta_{31} = \Delta m^2_{31} L/4E$ 

#### Disappearance $P_{disapp} = 1 - P_{\ell \rightarrow \ell}$

Leptonic Unitarity Triangle (PRD89(2014)073002)

 $= 4|U_{\ell 1}|^2 |U_{\ell 2}|^2 \sin^2 \Delta_{12}$ +  $4|U_{\ell 2}|^2 |U_{\ell 3}|^2 \sin^2\Delta_{23}$ +  $4|U_{\ell 3}|^2 |U_{\ell 1}|^2 \sin^2 \Delta_{31}$ 

 $\alpha$ ,  $\beta$ ,  $\gamma$  measurement

 $|U_{\ell 1}|$ ,  $|U_{\ell 2}|$ ,  $|U_{\ell 3}|$  (a,b,c) measurement

### $\Delta P_{CP}$ oscillogram of atmospheric neutrinos

CP effect: E~1-4GeV cos $\theta$ ~0.9 (4-15th  $\Delta_{32}$  max)

Neutrino/anti-neutrino flux to be understood: pi+/pi- production ratio







- CP violation is enhanced by x3 at the 2nd oscillation max
  - similar sensitivity for a same detector
  - impact of systematics is smaller
- Site study (Mt.Bohyun and Mt.Bisul) on going
  - strong support from the Korean science community



#### multi-PMT development for E61(NuPRISM) and HyperK

- multi-PMT (mPMT)
  - 19 of 3" PMT's in a vessel
    - economical 3" PMT's
- mPMT for E61(NuPRISM)
  - finer granularity for small WC
    - better than 8"
- mPMT for HyperK
  - multi-ring reconstruction
    - CC1π, mass hierarchy
  - angular sensitivity
    - accidental reduction for low E
  - provide calibration standard







m2Mbaaaaaaaaaa

#### Camera calibration for E61 beam test

- Fiducial calibration limited by the position calibration of PMT's
  - buoyancy on PMT's
  - distortion of the structure
- SNO+ uses six camera's on the wall
  - 1 cm accuracy in a swimming pool
  - Nicon D5000 (12M pixel)
    - much better resolution possible now
    - water resistant camera available
      - SubC (Newfoundland company)
- 3D reconstruction tools available
  - camera positions and angles are fit
    - no need for precise camera position



#### NuPRISM (E61) prototype beam test for detection efficiency

- Water tank for e,  $\mu$ ,  $\pi$ , K, p beam test
  - Fermilab test beam
    - 200MeV/c to 120GeV
  - 3m diameter tank
    - Simulate particles starting at the centre of NuPRISM
    - μ up to 700MeV/c stop inside
    - 8.3 radiation length: fully contain EM shower
- Experimental goal
  - Establish the detector calibration
    - fiducial volume at ~1% → 1-2cm in vertex systematics
    - energy scale at ~1%
  - Response of water Cherenkov to hadrons: π, K, p
  - Immediate impact on T2K and SK analyses
    - multi-ring event reconstruction







- Robotic arms with laser and PMT
  - laser light with polarization
  - monitor PMT
  - magnetometer



- Magnetic shielding
  - compensation coil, Giron shield





### Position dependence (vertical scan)

