

ATLAS Status Report Operations, Physics & Upgrades

P. Krieger, University of Toronto (on behalf of ATLAS Canada)

IPP AGM, Halifax, June 15, 2018

ATLAS Canada Collaboration

Founded in 1992: Spokespersons: M. Lefebvre, UVic R.S. Orr U of T 1994–2007 R. McPherson, IPP/UVic 2007-2015

Alberta Carleton McGill Montréal SFU Toronto TRIUMF UBC Victoria York

Current Management

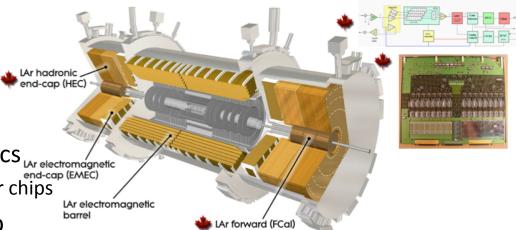
Spokesperson, PI (2015 –):	P. Krieger, U of T
Deputy:	A. Warburton, McGill
Physics Coord:	A. Lister, UBC
Computing Coord:	D. Gingrich, Alberta

38 University/Lab faculty (≈ 35 FTE)
30 Postdocs, 80 GS (Fall 2017), ≈ 25 UG students/year
Plus engineers and technicians (some MRS funded)
Group includes 5 IPP Research Scientists (4 FTE)

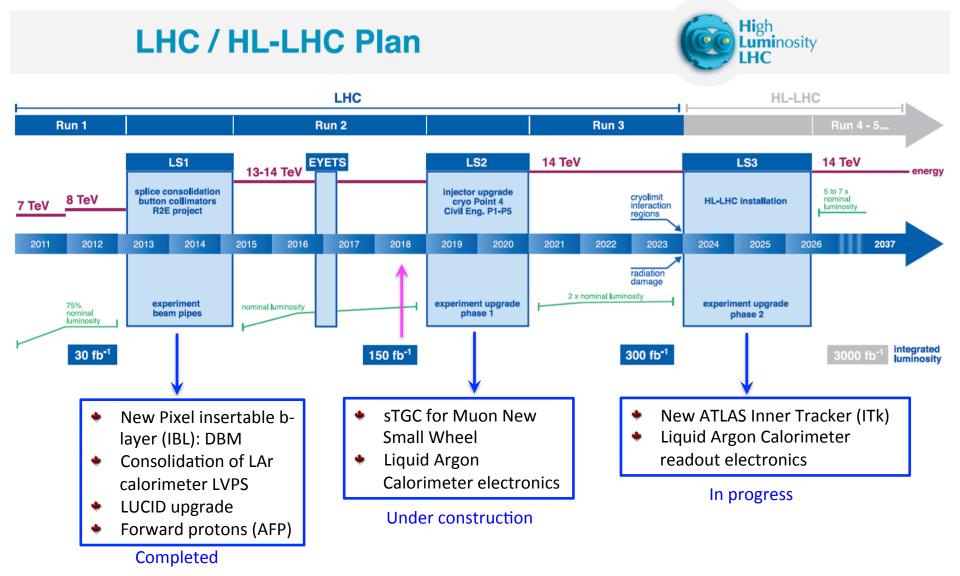
Institute of Particle Physics, AGM, June 15, 2018, Halifax NS

ATLAS Canada Activities & HQP

- Canadians playing key roles in ATLAS and the ATLAS Physics program
 - Physics: Physics Coordinator, Monte Carlo production coordinator
 - Performance: group convenors
 - Operations: subsystems Run Coordinators, detector experts, computing
 - Other: Executive Committee, Speakers Committee, Authorship Committee...
- Well represented in Phase-1 and Phase-2 upgrade projects
 - Both technical leadership and management roles
- HQP training:
 - 80 PhDs awarded on ATLAS (Sept 2017), 55 with collisions (Run 1, Run 2)
 - +10 since time of 2017 IPP AGM
 - Student awards (past grant cycle):
 - ATLAS Thesis award (1 of 4) 2015
 - Carleton Gold Medal & Governor General's award 2017
 - Close to 100 RAs have been trained within ATLAS Canada
 - ATLAS Outstanding achievement awards (3/20 in 2016):
 - Last set of awards: next set to be for full Run 2 period


The Large Hadron Collider at CERN

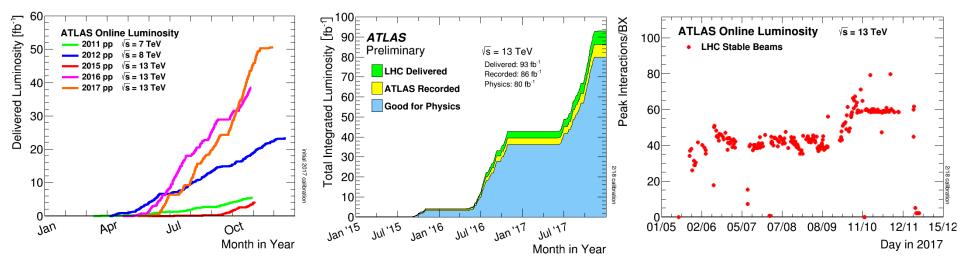
- The world's highest-energy particle collider:
 - Likely to remain at the energy-frontier for at least another two decades
 - Running at or above design luminosity since June 2016
- Over 750 scientific ATLAS publications (published or submitted)
- Higgs discovery in 2012 \rightarrow 2013 Nobel Prize to Higgs and Englert
 - Investigations of Higgs properties still important and on-going
 - Results for new production / decay modes using Run-2 data
 - Including recent updates with up to 80 fb⁻¹ of 13 TeV data
- Run-2 operation (2015-2018) at 13 TeV
 - Will increase to 14 TeV for Run-3
 - Maximum LHC energy is 14 TeV. After that, planned improvements are associated with an increase of the luminosity:
 - Accommodating such increases is the goal of the ATLAS upgrade program
- Canadian group playing leading roles in a number of upgrade projects
 - Funding from CFI: IF 2015 (Phase-1) and IF 2017 (Phase-2)
 - In each case following on from RTI support from NSERC during the R&D phase


Canadian Hardware Contributions to ATLAS

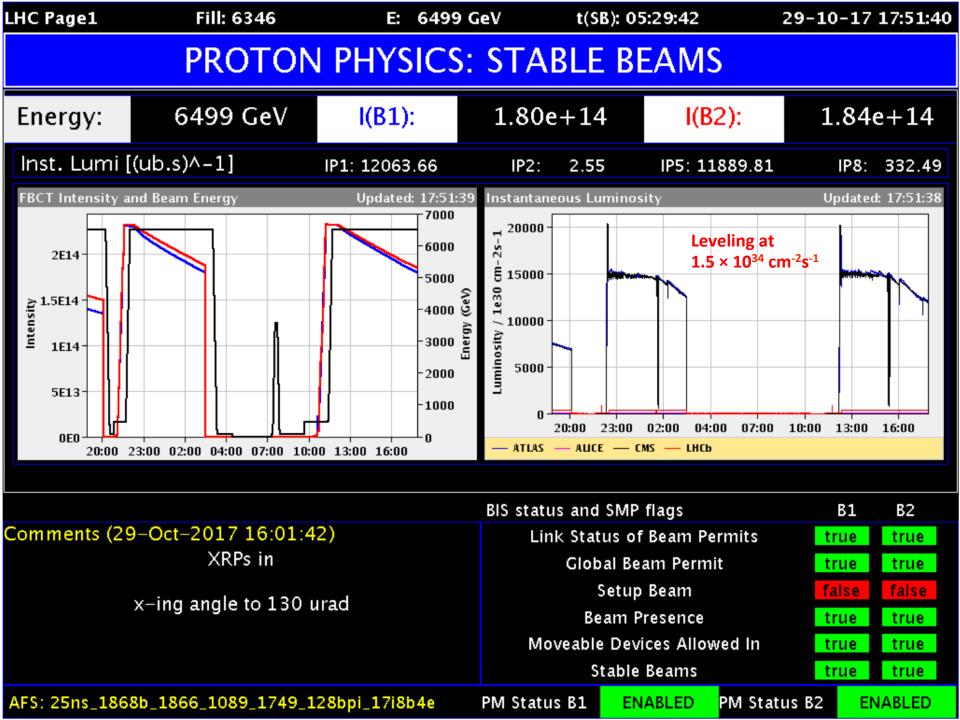
Canadian hardware contributions to ATLAS

- Hadronic Endcap calorimeter
 - Two of four wheels
- Hadronic Forward calorimeter
 - All four modules
- Liquid argon front-end electronics
 - Switched capacitor array controller chips
- Liquid argon calorimeter endcap signal feed-throughs
- ATLAS Tier-1 and Tier-2 Computing facilities
- High-level trigger (HLT) processors
- Diamond Beam Conditions Monitor (also used for luminosity)
- MediPix / TimePix for cavern background monitoring, luminosity
- LUCID luminosity monitor and upgrade in LS1 (2013-2015)
- Diamond Beam Monitor (telescope) installed in LS1 (2013-2015)
- Inner Detector (TRT) readout
- ATLAS Forward Protons (AFP) installation completed in 2016/17 shutdown

LHC/HL-LHC Schedule & ATLAS 🝁 upgrade planning


Main ATLAS Canada shutdown / upgrade activities

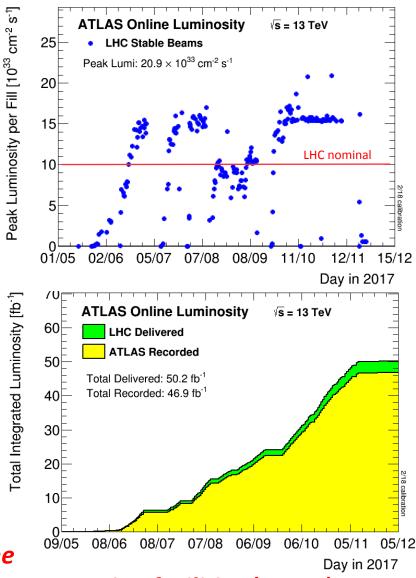
Institute of Particle Physics, AGM, June 15, 2018, Halifax NS


LHC/ATLAS Run-2 Operations (2017)

- Last IPP AGM coincided with the start of 2017 operations. That run year was very successful despite some challenges with the machine:
 - Beam losses in cell 16L2 (LHC sector 1-2)
 - Mitigation with special beam configuration "8b4e" (8 filled bunches then 4 empty)
 - Results in large increase in pileup; introduction of leveling at $<\mu> \approx 60$
 - Excellent machine availability: 49% of time in Stable beams (average for year)

- Later than usual startup – extended technical stop for CMS pixel work

Run-2 dataset for 2015 – 2017 80 fb⁻¹ good for physics


LHC/ATLAS 2017 Operations

ATLAS Run-2 Detector Status (from July 2017)

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	97.8%
SCT Silicon Strips	6.3 M	98.7%
TRT Transition Radiation Tracker	350 k	97.2%
LAr EM Calorimeter	170 k	100 %
Tile Calorimeter	5200	99.2%
Hadronic End-Cap LAr Calorimeter	5600	99.5%
Forward LAr Calorimeter	3500	99.7%
LVL1 Calo Trigger	7160	99.9%
LVL1 Muon RPC Trigger	383 k	99.8%
LVL1 Muon TGC Trigger	320 k	99.9%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	95.3%
RPC Barrel Muon Chambers	383 k	94.4%
TGC End-Cap Muon Chambers	320 k	99.5%
ALFA	10 k	99.9%
AFP	430 k	93.8%

ATLAS pp 25ns run: June 5-November 10 2017

Inner Tracker		Calori	meters	Muon Spectrometer				Magnets		
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
100	99.9	99.3	99.5	99.4	99.9	97.8	99.9	100	100	99.2
Good for physics: 93.6% (43.8 fb ⁻¹)										

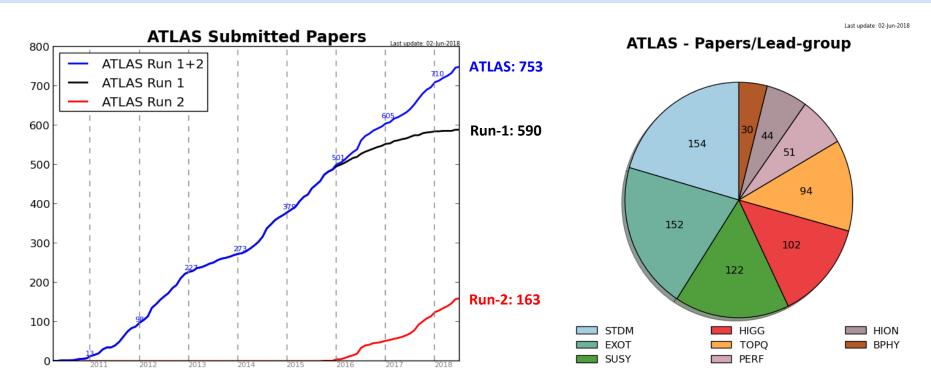
Overall excellent performance in 2017 of the LHC machine, the ATLAS detector, and ATLAS computing facilities (WLGC)

Operations: ATLAS Canada Computing

• Computing resources are a critical part of ATLAS

- Challenging during Run-2 due to higher than expected pileup

• Canada hosts 1 of the 10 ATLAS Tier-1s


- Typically one of the highest reliability Tier-1s
- Currently being relocated from TRIUMF to SFU
- Hardware funding secured through 2020, via
 CFI IF 2017 competition (matching from BCKDF)

• We also provide 5% of ATLAS Tier-2 resources, via Compute Canada

- Compute Canada currently performing a site consolidation
- Some issues for ATLAS Canada due to new sites not yet being fully commissioned
- Necessary resources do not diminish during upcoming long shutdown
- ATLAS continues to rely on resources beyond those "pledged" to the WLCG, in the form of opportunistic access to HPC and cloud resources
 - ATLAS-Canada group members play a leading role in ATLAS cloud computing effort
- Canadians also involved in development of ATLAS core computing:
 - People funded via CyberInfrastructure program: one person based at CERN
 - Also an important part of our HQP training progam

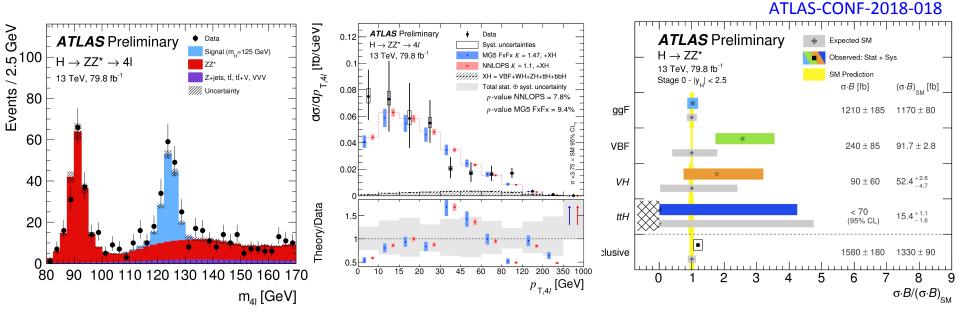

ATLAS Physics Results

- Run-1 papers +13 since last years AGM talk
- Run-2 papers +101 since last years AGM talk
 - Mainly 2015 + 2016 (continuing to produce these publications): 36 fb⁻¹
 - Publication strategy is to focus next on papers based on the full Run-2 dataset
 - Plan for limited number of new / updated results including 2017 data
 - 7 such new results shown last week at LHCP 2018 http://lhcp2018.bo.infn.it/
 - Includes 6.3 σ observation of $t\overline{t}H$ production

Higgs Boson Studies with 80 fb⁻¹ ($t\overline{t}H$)

• Observation of $t\overline{t}H$ production: Higgs final states: $b\overline{b}, WW^*, \tau^+\tau^-, \gamma\gamma, ZZ^*$

- 5.8σ with 13 TeV data (4.9σ expected)
- Combination with Run-1 result \rightarrow 6.3 σ (5.1 σ expected)
 - Announced simultaneously with 5.2 σ result from CMS [CMS-HIG-17-035]
 - Significant Canadian leadership and involvement here:
 - Multiple Higgs final states
 - Both Run-1 and Run-2 analyses

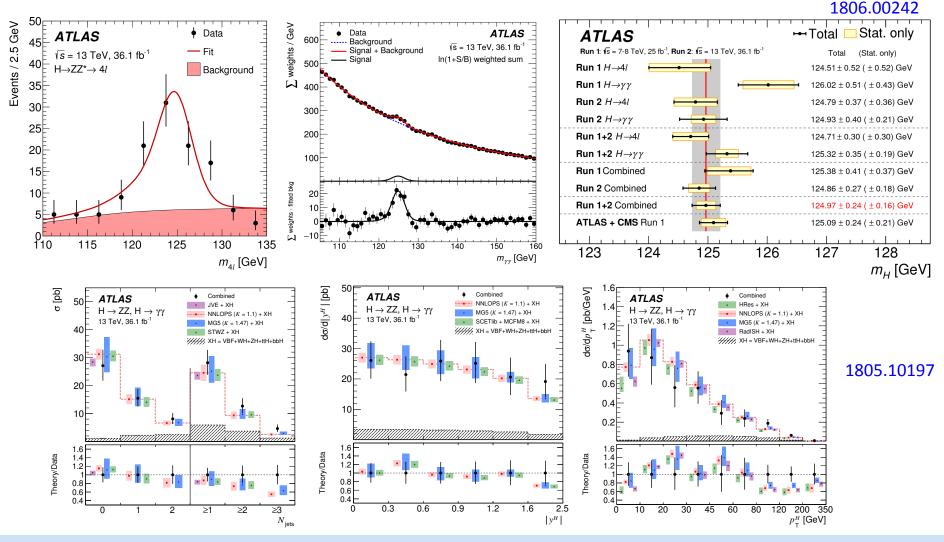

Measured cross sections in agreement with SM predictions

1806.00425

Higgs Boson Studies with 80 fb⁻¹ ($H \rightarrow ZZ^* \rightarrow 4\ell$)

• Updated analysis of Higgs $\rightarrow ZZ^* \rightarrow 4$ lepton production:

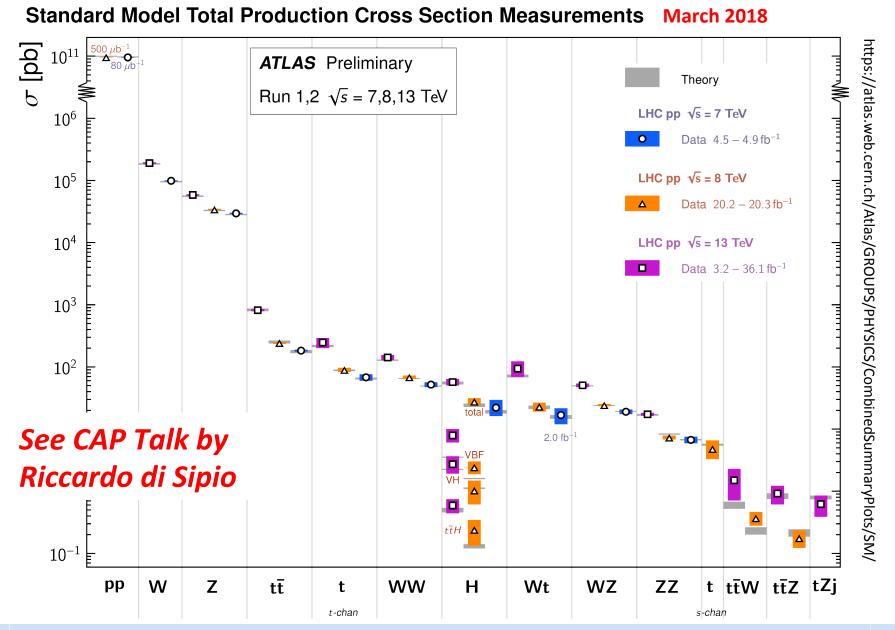
Inclusive, differential and production-mode cross-sections



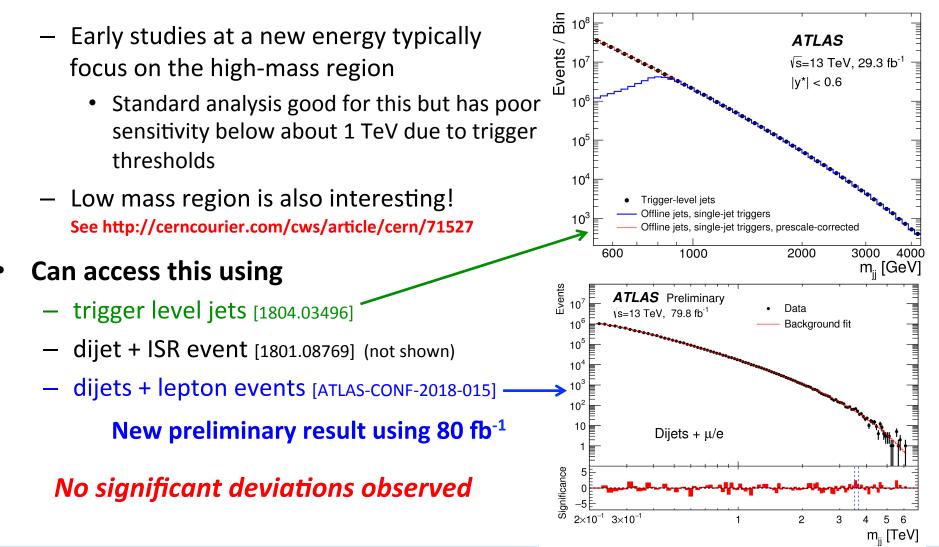
Measured cross-sections consistent with SM

Complements / updates recently published ATLAS results on total and differential cross-sections from combined analysis of $\gamma\gamma, ZZ^* \rightarrow 4\ell$ final states, based on 36 fb⁻¹ (2015+2016 data)

Higgs Mass and Cross-section using 36 fb⁻¹


Recently published Higgs mass and (combined) total and differential crosssection measurements based on 2015+16 data, in $\gamma\gamma$, $ZZ^* \rightarrow 4\ell$ final states

P.Krieger, U of T


Institute of Particle Physics, AGM, June 15, 2018, Halifax NS

Other Standard Model Cross-sections

Searches for Dijet Resonances

 Standard searches for dijet resonance typically one of the first results when running at new energy. Was an early Run-2 result:

SUSY Search Summary

ATLAS SUSY Searches* - 95% CL Lower Limits Dec 2017 December 2017

ATLAS Preliminary

13 TeV dataset

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [ft	Mass limit	$\sqrt{s} = 7,$	8 TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} \overline{q}\overline{q}, \ \overline{q} \rightarrow q\overline{k}_{1}^{0} \\ \overline{q}\overline{q}, \ \overline{q} \rightarrow q\overline{k}_{1}^{0} \\ \overline{g}\overline{q}, \ \overline{q} \rightarrow q\overline{k}_{1}^{0} \\ \overline{g}\overline{q}, \ \overline{q} \rightarrow q\overline{k}_{1}^{0} \\ \overline{g}\overline{q}, \ \overline{g} \rightarrow q\overline{q}\overline{k}_{1}^{0} \\ \overline{g}\overline{g}, \ \overline{g} \rightarrow q\overline{q}\overline{k}_{1}^{0} \rightarrow q\overline{q}W^{\pm}\overline{k}_{1}^{0} \\ \overline{g}\overline{g}, \ \overline{g} \rightarrow q\overline{q}W(E/\overline{k}_{1}^{0} \\ \overline{g}\overline{g}, \ \overline{g} \rightarrow q\overline{q}WWZ_{1}^{0} \\ \overline{g}\overline{g}, \ \overline{g} \rightarrow q\overline{g}WWZ_{1}^{0} \\ \overline{g}\overline{g}, \ \overline{g} \rightarrow q\overline{g}\overline{g}\overline{g} \rightarrow q\overline{g}\overline{g}\overline{g}\overline{g} \rightarrow q\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}\overline{g}$	0 mono-jet 0 <i>ee</i> ,μμ 3 <i>e</i> ,μ 0 1-2 τ + 0-1 ℓ 2 γ γ 0	2-6 jets 1-3 jets 2-6 jets 2-6 jets 2 jets 4 jets 7-11 jets 0-2 jets - 2 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 14.7 36.1 36.1 3.2 36.1 36.1 20.3	\$\vec{q}\$ \$\vec{q}\$ \$\vec{k}\$	2.01 TeV 1.7 TeV 1.87 TeV 1.8 TeV 2.0 TeV 2.15 Te	$\begin{split} &m(\tilde{\xi}^{0}_{1})\!<\!200\text{GeV},m(1^{H}\text{gen.}\tilde{q})\!=\!m(2^{Pd}\text{gen.}\tilde{q})\\ &m(\tilde{g})\!=\!m(\tilde{\xi}^{P1}_{1})\!<\!25\text{GeV}\\ &m(\tilde{\xi}^{P1}_{1})\!<\!200\text{GeV},m(\tilde{\xi}^{P1})\!=\!0.5(m(\tilde{\xi}^{P1}_{1})\!+\!m(\tilde{g}))\\ &m(\tilde{\xi}^{P1}_{1})\!=\!0.\text{GeV}\\ &m(\tilde{\xi}^{P1}_{1})\!=\!0.\text{GeV}\\ &m(\tilde{\xi}^{P1}_{1})\!=\!0.\text{GeV}\\ &m(\tilde{\xi}^{P1}_{1})\!=\!0.\text{GeV}\\ &m(\tilde{\xi}^{P1}_{1})\!=\!1.00\text{GeV},cr(NLSP)\!<\!0.1\text{mm}\\ &m(\tilde{\xi}^{P1}_{1})\!=\!1.700\text{GeV},cr(NLSP)\!<\!0.1\text{mm},\mu\!>\!0\\ &m(\tilde{\xi}^{P1}_{1})\!=\!1.700\text{GeV},cr(NLSP)\!<\!0.1\text{mm},\mu\!>\!0 \end{split}$	1712.02332 1711.0301 1712.02332 1611.05791 1706.03731 1706.02794 1607.05979 ATLAS-CONF-2017-080 1502.01518
3 rd gen. <u>§</u> med.	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0} \end{array}$	0 0-1 <i>e</i> , <i>µ</i>	3 b 3 b	Yes Yes	36.1 36.1	β ĝ		m(\tilde{k}_1^0)<600 GeV m(\tilde{k}_1^0)<200 GeV	1711.01901 1711.01901
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{h}_1 \tilde{b}_1, \tilde{h}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{h}_1 \tilde{h}_1, \tilde{h}_1 \rightarrow c \tilde{h}_1 \\ \tilde{h}_1 \tilde{h}_1 + \tilde{h}_1 \\ \tilde{h}_1 \tilde{h}_1 \\ \tilde{h}_1 \tilde{h}_1 + \tilde{h}_1 \\ \tilde{h}_1 \tilde{h}_1 + \tilde{h}_1 \\ \tilde$	0 2 e, μ (SS) 0-2 e, μ 0 2 e, μ (C) 2 e, μ (Z) 3 e, μ (Z) 1-2 e, μ	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b		36.1 36.1 7/13.3 0.3/36.1 36.1 20.3 36.1 36.1 36.1	b1 950 GeV b1 275-700 GeV i1 117-170 GeV i1 117-170 GeV i1 90-198 GeV i1 90-430 GeV i1 90-430 GeV i2 290-790 GeV i2 320-880 GeV		$\begin{split} & m(\tilde{k}_1^0) {<} 420 \; \text{GeV} \\ & m(\tilde{k}_1^0) {<} 200 \; \text{GeV}, m(\tilde{k}_1^0) {=} m(\tilde{k}_1^0) {+} 100 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 2m(\tilde{k}_1^0), m(\tilde{k}_1^0) {=} 5 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 1 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 1 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 1 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 0 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 0 \; \text{GeV} \\ & m(\tilde{k}_1^0) {=} 0 \; \text{GeV} \end{split}$	1708.09266 1706.03731 1209.2102, ATLAS-CONF-2016-077 1506.08616, 1709.04183, 1711.11520 1711.03301 1403.5222 1706.03986 1706.03986
EW direct	$ \begin{split} \tilde{t}_{L,R} \tilde{t}_{L,R}, \tilde{t} \rightarrow \ell \tilde{\chi}_1^0 \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_2^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu}), \tilde{\chi}_2^0 \rightarrow \tilde{\tau} \tau(\nu \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow \tilde{\ell}_2^- \tilde{\ell}_4, \tilde{\ell}_4^- (\ell \tilde{\nu}), \ell \nu \tilde{\ell}_4^- \ell \ell \tilde{\nu}) \\ \tilde{\chi}_1^+ \tilde{\chi}_2^0 \rightarrow W_1^0 / \tilde{\chi}_1^0 \\ \tilde{\chi}_2^+ \tilde{\chi}_2^0 \rightarrow W_1^0 / \tilde{\chi}_1^0 \\ \tilde{\chi}_2^+ \tilde{\chi}_2^0 \rightarrow W_1^0 / \tilde{\chi}_1^0 \\ \tilde{\chi}_2^+ \tilde{\chi}_2^0 \rightarrow W_1^0 / \tilde{\chi}_1^0 \\ \tilde{\chi}_2^0 \\ \tilde$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ e, \mu, \gamma \\ 4 \ e, \mu \\ \gamma \tilde{G} \ 1 \ e, \mu + \gamma \\ \gamma \tilde{G} \ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 36.1	i 90-500 GeV k1 750 GeV k1 760 GeV k1, k2 580 GeV k1, k2 580 GeV k2, k2 580 GeV	$m(\tilde{\chi}_2^0)=$	$\begin{split} m(\tilde{x}_{1}^{0}) &= 0 \\ m(\tilde{x}_{1}^{0}) &= 0, m(\tilde{\ell}, \tilde{\nu}) &= 0.5(m(\tilde{\ell}_{1}^{-1}) + m(\tilde{\ell}_{1}^{0})) \\ m(\tilde{k}_{2}^{0}) &= 0, m(\tilde{\ell}, \tilde{\nu}) &= 0.5(m(\tilde{k}_{1}^{0}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{2}^{0}) &= m(\tilde{k}^{0}) &= 0.5(m(\tilde{k}_{1}^{0}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}) &= m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}) &= 0.5(m(\tilde{k}_{2}^{0}) + m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}) &= m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}) &= 0.5(m(\tilde{k}_{2}^{0}) + m(\tilde{k}_{1}^{0})) \\ c\tau < 1 mm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1708.07875 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 ATLAS-CONF-2017-080
Long-lived particles	$ \begin{array}{l} \text{Direct} \ \tilde{X}_1^+ \tilde{X}_1^- \ \text{prod., long-lived} \ \tilde{X}_1^+ \\ \text{Direct} \ \tilde{X}_1^+ \tilde{X}_1^- \ \text{prod., long-lived} \ \tilde{X}_1^+ \\ \text{Stable, } \ \text{stable, } \ \tilde{g} \ \text{R-hadron} \\ \text{Stable, } \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable, } \ \tilde{g} \ \text{R-hadron} \\ \text{Model} \\ \text{MSB, } \ \text{stable, } \ \tilde{\chi}_1^0 \rightarrow \tau(\tilde{e}, \mu) + \tau(e, \mu) \\ \text{GMSB, } \ \tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}, \ \text{long-lived} \ \tilde{\chi}_1^0 \\ \\ \ \tilde{g}, \ \tilde{\chi}_1^0 \rightarrow ev/(\mu \nu / \mu \nu) \\ \end{array} $	Disapp. trk dE/dx trk 0 trk dE/dx trk displ. vtx $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$	1 jet - 1-5 jets - - - - - - - -	Yes Yes - - Yes - Yes -	36.1 18.4 27.9 3.2 3.2 32.8 19.1 20.3 20.3	\$\vec{k}_1^*\$ 450 GeV \$\vec{k}_1^*\$ 495 GeV \$\vec{k}_2^*\$ 850 GeV \$\vec{k}_2^*\$ 850 GeV \$\vec{k}_2^*\$ 850 GeV \$\vec{k}_2^*\$ 537 GeV \$\vec{k}_1^*\$ 537 GeV \$\vec{k}_1^*\$ 440 GeV \$\vec{k}_1^*\$ 1.0 TeV		$\begin{split} & m(\tilde{k}_1^2) - m(\tilde{k}_1^0) - 160 \; MeV, \; \tau(\tilde{k}_1^+) = 0.2 \; ns \\ & m(\tilde{k}_1^2) - m(\tilde{k}_1^0) - 160 \; MeV, \; \tau(\tilde{k}_1^+) < 15 \; ns \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; 10 \; \mus < \tau(\tilde{\varrho}) < 1000 \; s \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; r>10 \; ns \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; r>10 \; ns \\ & TeV \; \; \tau(\tilde{\varrho}) = 0.17 \; ns, \; m(\tilde{k}_1^0) = \; 100 \; GeV \\ & 10 < tan \rho < 50 \\ & 10 < tan \rho < 50 \\ & 1 < re(\tilde{k}_1^0) < 3 \; ns, \; SPS8 \; model \\ & 7 \; < \tau(\tilde{k}_1^0) < 740 \; nm, \; m(\tilde{k}) = 1.3 \; TeV \end{split}$	1712.02118 1506.05332 1310.6584 1606.05129 1604.04520 1710.04901 1411.6795 1409.5542 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \overline{v}_\tau + X, \overline{v}_\tau \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \overline{x}_1^\tau \overline{x}_1, \overline{x}_1^\tau \rightarrow W \overline{x}_1^{\tau} \overline{x}_1^{\tau} \rightarrow W \overline{x}_1^{\tau} \overline{x}_1^{\tau} \rightarrow K \\ \overline{x}_1^\tau \overline{x}_1, \overline{x}_1^\tau \rightarrow W \overline{x}_1^{\tau} \overline{x}_1^{\tau} \rightarrow Trv_e, etv, \\ \overline{x}_1^\tau \overline{x}_1, \overline{x}_1^\tau \rightarrow W \overline{x}_1^{\tau} \rightarrow Q \\ \overline{g}_{\overline{g}}, \overline{g} \rightarrow Q \overline{g}_{\overline{g}}, \overline{g} \rightarrow Q \\ \overline{g} $	1 <i>e</i> ,μ 8 1 <i>e</i> ,μ 8	- 0-3 b - - 5 large-R j -10 jets/0-4 2 jets + 2 i 2 b	4 <i>b</i> - 4 <i>b</i> -	3.2 20.3 13.3 20.3 36.1 36.1 36.1 36.7 36.1	\$\vec{r}\$, \$\vec{k}\$; \$\	1.45 TeV TeV 1.875 TeV	$\begin{split} \lambda_{311}' = 0.11, \lambda_{132/133/233} = 0.07 \\ m(\tilde{\varrho}) = m(\tilde{\varrho}), c_{T_LSP} < 1 \text{ mm} \\ m(\tilde{k}_1^{(2)}) > 400 \text{GeV}, \lambda_{122} \neq 0 \ (k = 1, 2) \\ m(\tilde{k}_1^{(2)}) = 0.22 \text{ m}(\tilde{k}_1^{(2)}, \lambda_{133} \neq 0 \\ m(\tilde{k}_1^{(2)}) = 1075 \text{ GeV} \\ m(\tilde{k}_1^{(2)}) = 1179V, \lambda_{112} \neq 0 \\ m(\tilde{k}_1) = 1178V, \lambda_{122} \neq 0 \\ m(\tilde{k}_1) = 1178V, \lambda_{232} \neq 0 \\ \text{BR}(\tilde{k}_1 \rightarrow be/\mu) > 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 SUSY-2016-22 1704.08493 1704.08493 1710.07171 1710.05544
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	ε 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325
*Only pher	a selection of the available mas nomena is shown. Many of the l	s limits on r imits are ba	new state sed on	es or	1	0 ⁻¹	1	Mass scale [TeV]	

phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

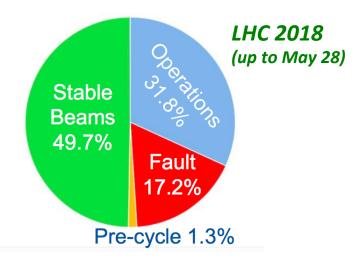
See CAP Talk by Kate Pachal

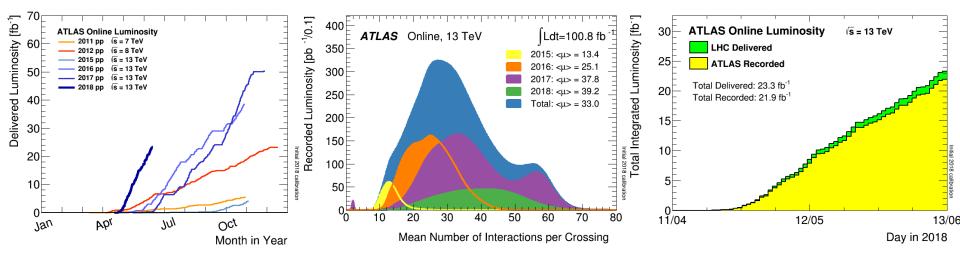
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/SUSY/

Exotics Search Summary

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits July 2017 Status: July 2017

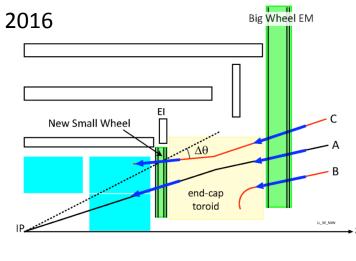
ATLAS Preliminary $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

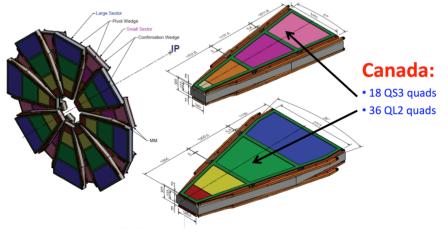

	Model	<i>ℓ</i> ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fl	¹] Limit	.2 – 37.0) 10 -	Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qqt$ 2UED / RPP	$0 e, \mu$ 2γ $-$ $\geq 1 e, \mu$ $-$ 2γ $v \qquad 1 e, \mu$ $1 e, \mu$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $1J$ $\geq 2b, \geq 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	Mp 7.75 TeV Ms 8.6 TeV Mth 8.9 TeV Mth 8.2 TeV Mth 9.55 TeV GKK mass 4.1 TeV KK mass 1.6 TeV	$\begin{split} n &= 2 \\ n &= 3 \text{ HLZ NLO} \\ n &= 6 \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ n &= 6, M_D = 3 \text{ TeV, rot BH} \\ k/\overline{M}_{PI} &= 0.1 \\ k/\overline{M}_{PI} &= 1.0 \\ \text{Tier } (1,1), \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1 \end{split}$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\; Z' \to \ell\ell \\ \mathrm{SSM}\; Z' \to \tau\tau \\ \mathrm{Leptophobic}\; Z' \to bb \\ \mathrm{Leptophobic}\; Z' \to tt \\ \mathrm{SSM}\; W' \to \ell\nu \\ \mathrm{HVT}\; V' \to WV \to qqqq \mbox{ model} \mbox{ HVT}\; V' \to WH/ZH \mbox{ model} \mbox{ HXF}\; W_R' \to tb \\ \mathrm{LRSM}\; W_R' \to tb \end{array}$		- 2 b ≥ 1 b, ≥ 1J - 2 J nel 2 b, 0-1 j ≥ 1 b, 1 s	Yes - Yes	36.1 36.1 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass 4.5 TeV Z' mass 2.4 TeV Z' mass 1.5 TeV Z' mass 2.0 TeV W' mass 5.1 TeV V' mass 3.5 TeV V' mass 2.93 TeV W' mass 1.92 TeV W' mass 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-147 ATLAS-CONF-2017-055 14110.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	_ 2 e,μ 2(SS)/≥3 e	2 j _ e,µ ≥1 b, ≥1	– – j Yes	37.0 36.1 20.3	Λ Λ Λ 4.9 TeV	21.8 TeV η_{LL}^- 40.1 TeV η_{LL}^- $ C_{RR} = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac I Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	DM) 0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4j y $\leq 1j$ 1 J, $\leq 1j$	Yes Yes Yes	36.1 36.1 3.2	mmmed 1.5 TeV mmmed 1.2 TeV M, 700 GeV	$\begin{array}{l} g_q {=} 0.25, g_\chi {=} 1.0, m(\chi) < 400 \; {\rm GeV} \\ g_q {=} 0.25, g_\chi {=} 1.0, m(\chi) < 480 \; {\rm GeV} \\ m(\chi) < 150 \; {\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ГQ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3	– – j Yes	3.2 3.2 20.3	LQ mass 1.1 TeV LQ mass 1.05 TeV LQ mass 640 GeV	eta = 1 eta = 1 eta = 0	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ\;TT \rightarrow Ht + X \\ VLQ\;TT \rightarrow Zt + X \\ VLQ\;TT \rightarrow Wb + X \\ VLQ\;BB \rightarrow Hb + X \\ VLQ\;BB \rightarrow Zb + X \\ VLQ\;BB \rightarrow Zb + X \\ VLQ\;BB \rightarrow Wt + X \\ VLQ\;QQ \rightarrow WqWq \end{array} $	1 e,μ 1 e,μ 1 e,μ 2/≥3 e,μ	$\begin{array}{ll} u & \geq 2 \ \text{b}, \geq 3 \\ & \geq 1 \ \text{b}, \geq 3 \\ & \geq 1 \ \text{b}, \geq 1 \text{J} \\ & \geq 2 \ \text{b}, \geq 3 \\ & \geq 2 \ \text{b}, \geq 3 \\ & \geq 2/\geq 1 \ \text{b}, \geq 1 \text{J} \\ & \geq 1 \ \text{b}, \geq 1 \text{J} \\ & \geq 4 \ \text{j} \end{array}$	j Yes /2j Yes j Yes –	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass 1.2 TeV T mass 1.16 TeV T mass 1.35 TeV B mass 700 GeV B mass 790 GeV B mass 1.25 TeV Q mass 690 GeV	$\begin{split} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{split}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited quark $b^* \rightarrow Wt$ Excited lepton t^* Excited lepton v^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j u 1 b, 2-0 j - -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q* mass 6.0 TeV q* mass 5.3 TeV b* mass 2.3 TeV b* mass 1.5 TeV v* mass 3.0 TeV v* mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $f_{g} = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, µ 2,3,4 e, µ (S 3 e, µ, τ 1 e, µ - - √s = 8 TeV		- - Yes - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N ⁰ mass 2.0 TeV H ^{±±} mass 870 GeV H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV monopole mass 785 GeV monopole mass 1.34 TeV 1.0 ⁻¹ 1	$\begin{split} m(W_{\rm fit}) &= 2.4 \text{ TeV}, \text{ no mixing} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{\pm\pm} \to \ell r) = 1 \\ a_{\rm non-res} = 0.2 \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1g_D, \text{ spin } 1/2 \end{split}$	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059
							Mass scale [TeV]	


*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

See CAP Talk by Kate Pachal

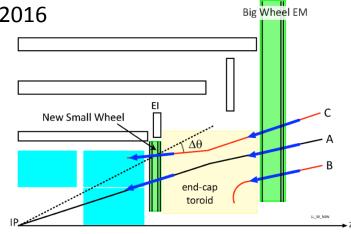
LHC / ATLAS Startup 2018

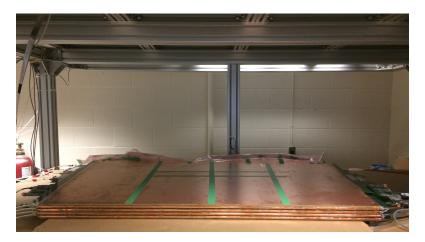

- First 2018 stable beams collisions April 17 (was May 23 in 2017)
- Problems in cell 16L2 are back:
 - Less severe; different mitigation strategy
 - Brief run with 900 bunches, then back to 2556
- Otherwise relatively smooth operation
- Recently surpassed 100 fb⁻¹ at 13 TeV
 - 21.9 fb⁻¹ recorded so far in 2018 (June 12)
- Excellent machine availability (as in 2017)



Phase-1 Upgrades: Muon New Small Wheel

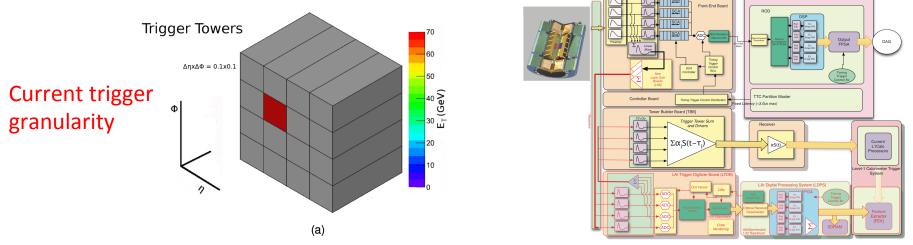
- NSW key component of muon trigger for Run-3 (fake rejection with pointing)
- sTGC construction / testing infrastructure at TRIUMF, Carleton and McGill
 - Module-0 sTGC completed by Canadian group in May 2016
 - Production Readiness Review (PRR) passed in June 2016
- Leading we coordination roles in NSW project:
 - Overall project management, schedule, finances
 - Leadership of sTGC project
 - Wedge assembly at CERN
 - Software / simulation
 - Electronics / software for cosmic-ray test station
 - Production test pulser board for sTGCs
- Production delays due to component procurement:
 - Also delays for other NSW sub-systems
 - First production module now being tested at McGill



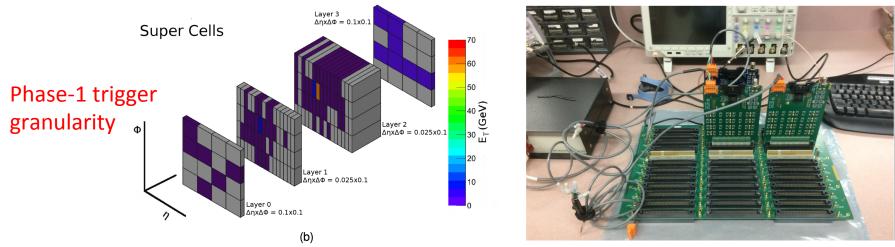


Phase-1 Upgrades: Muon New Small Wheel

- NSW key component of muon trigger for Run-3 (fake rejection with pointing)
- sTGC construction / testing infrastructure at TRIUMF, Carleton and McGill
 - Module-0 sTGC completed by Canadian group in May 2016
 - Production Readiness Review (PRR) passed in June 2016
- Leading we coordination roles in NSW project:
 - Overall project management, schedule, finances
 - Leadership of sTGC project
 - Wedge assembly at CERN
 - Software / simulation
 - Electronics / software for cosmic-ray test station
 - Production test pulser board for sTGCs
- Production delays due to component procurement:
 - Also delays for other NSW sub-systems
 - First production module now being tested at McGill


See CAP talk by T. Kwan

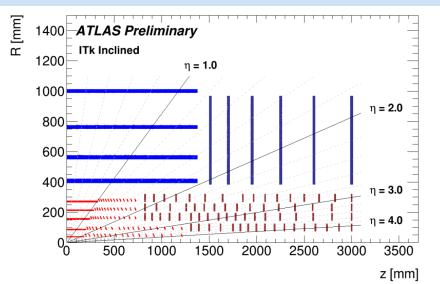
Phase-1 Upgrades: LAr Calorimeter Electronics

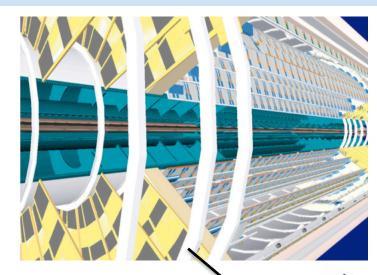

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background suppression at trigger level

- Implementation requires new Front-End Crate baseplanes
- For the HEC, these are being developed and produced by Victoria / TRIUMF
 - Design approved in 2015: pre-production board have been produced and tested
 - Production Readiness Review completed in Feb 2018
 - PCB manufacturing complete; boards now being connectorized in industry
 - Expected at TRIUMF in July; testing to follow at UVic

Phase-1 Upgrades: LAr Calorimeter Electronics

- Another key component of ATLAS trigger strategy for Run-3
- Improve granularity of information supplied to the L1 trigger
 - Provide additional background suppression at trigger level


- Implementation requires new Front-End Crate baseplanes
- For the HEC, these are being developed and produced by Victoria / TRIUMF
 - Design approved in 2015: pre-production board have been produced and tested
 - Production Readiness Review completed in Feb 2018
 - PCB manufacturing complete; boards now being connectorized in industry
 - Expected at TRIUMF in July; testing to follow at UVic


Full Phase-1 LAr upgrade project progressing well

ATLAS at the High Luminosity LHC

- Proposed instantaneous luminosity of 7.5 × 10³⁴ cm⁻²s⁻¹ (µ≈200)
 - Needed for the desired (×10) increase in integrated luminosity
 - Rate and accumulated dose causes problems for some detector subsystems
 - Need for pileup suppression becomes crucial issue for detector upgrades
- Proposed L0/L1 trigger scheme with rates of 1MHz/400KHz is incompatible with both tracker and calorimeter readout electronics:
 - Calorimeter front- and back-end electronics must be entirely replaced w
- Radiation dose and occupancy also an issue for the tracker
 - This will be entirely replaced by a new all-silicon tracker, the ITk w
 - Pixels at low radius, strips at higher radius.
 - Coverage out to $|\eta| = 4.0$ (from 2.5 for current inner tracker)
 - 160 m² of silicon. Almost half the cost / effort of Phase-II upgrades
- Anticipate some coverage improvements for Muon system
- ATLAS investigating dedicated (Si) timing detector in the forward region
- Canadian participation funded by CFI in IF 2017 competition
 - We have multiple technical leadership & management roles in both projects

Phase-II Tracker Upgrade (ITk)

⁴⁸C130

and J. Bottte

• Excellent tracking needed for the HL-LHC physics program

- Need precision vertexing to identify the primary vertex from high pileup
- Canadian group contributing to construction of the Endcap Strips detector:
 - about 18k Si strip modules needed (~7000 in endcap):
 - plan for 1500 in Canada (2 sites: Vancouver, Toronto)
 - Additional planned contributions:
 - Industrialize production of "hybrid boards"
 - Module placement on support structure for Endcap "petals"
 - Readout electronics ASIC wafer probing and dicing
 - Simulation infrastructure

24

Endcap Petal

See CAP talks by F. Guescini

Phase-II LAr Calorimeter Upgrade Work

- Proposed forward calorimeter replacement decided against in Sept. 2016
 - Risk (damage to other endcap calorimeter subsystems) vs. reward (improved performance) study concluded that the benefits are not work the risks
- Canadian groups integrating into Phase-II electronics effort:
 - Naturally follows our Phase-I work and historical contributions to ATLAS
 - Focus on front-end electronics for the HEC
 - HEC was built in part in Canada
 - Different from other LAr subsystems, due to cold preamplifiers in the cryostat
 - Exploit particular Canadian expertise in the HEC readout
 - Also taking leadership role in development of FPGA-based back-end (offdetector) system
 - Data handling
 - FPGA-based filtering algorithms used for energy reconstruction

• Canadians occupy a significant fraction coordination roles:

- Simulation group, Front-End group, Resources

Summary

- LHC/ATLAS operations were excellent in 2017
 - − Smooth startup in 2018. \mathcal{L}_{int} slope ≈ that achieved towards end of 2017
 - Earlier start to 2018 run year; targeting integrated luminosity of 60 fb⁻¹

• Canadian group successfully engaged in all aspects of ATLAS

- Important and visible roles in the Collaboration
- Physics output (analysis, review, physics group & sub-group convenors, etc.)
- Detector operations (run coordinators for multiple subsystems), computing
- Strong participation in detector upgrade activities
 See CAP talk by N. Hessey
 - Phase-1: LAr trigger electronics, sTGCs for NSW
 - Phase-2: LAr readout electronics, ITk
 - Including leadership roles in both Phase-1 and Phase-2 projects

• Also pursuing a 🍁 contribution to the HL-LHC accelerator upgrade

- With the help of IPP Director and the support of TRIUMF
- Meeting between CERN DG and Science Minister Duncan in Nov 2017
- CERN visit by Canada's Chief Science Advisor (M. Nemer) in May 2018
- Decision on this is expected soon

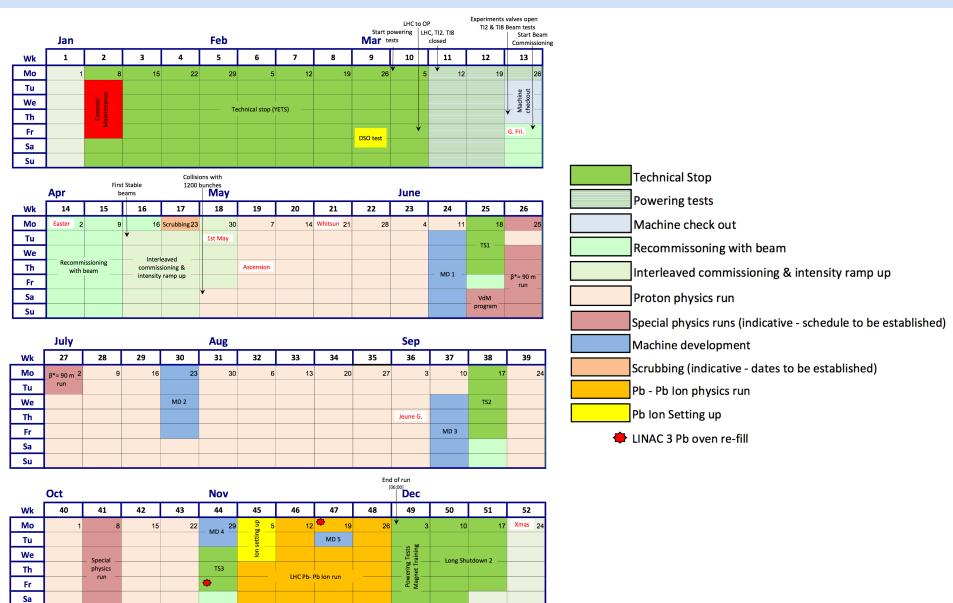
ATLAS Talks at the 2018 CAP Congress

11 ATLAS talks at 2018 CAP Congress

Invited

- Searches for New Physics at ATLAS, K. Pachal
- Standard Model and Higgs results from ATLAS, *R. di Sipio*
- The ATLAS Upgrade for the High-Luminosity LHC, N. Hessey

Contributed (upgrade hardware)


- ATLAS ITk activities at SFU, TRIUMF and UBC
- Performance of Canadian-made muon chambers for the ATLAS experiment Phase-1 upgrade
- Developing ITk Front-end Silicon-strips Readout ASICs Testing Capability

Contributed (physics)

- Measurement of the Drell–Yan triple-differential cross section in pp collisions at $\sqrt{s} = 8$ TeV
- High mass Diboson Resonances with the ATLAS Detector
- Search for dark matter candidates produced in Z(II) + ETmiss events in 13 TeV proton-proton collisions with the ATLAS detector at the Large Hadron Collider
- Search for new dark sector particles in Higgs boson decays with the ATLAS detector at the LHC
- Measurement of Z bosons produced in association with jets via vector boson fusion at 13 TeV with the ATLAS detector

Backup

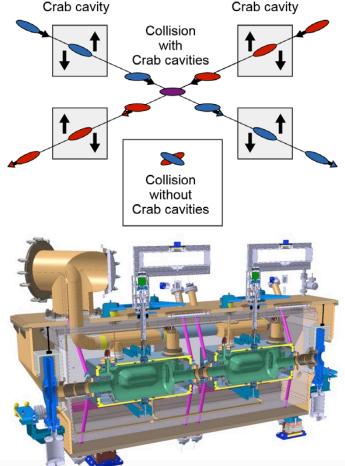
LHC Schedule 2018

Su

MD 4

Institute of Particle Physics, AGM, June 15, 2018, Halifax NS

ATLAS Canada Operations & Upgrade Funding


- Operations: currently in first year of new three-year NSERC project grant
 - 2018—2021 (proposal submitted in fall 2017)
- Phase-1 Upgrades
 - LAr, NSW projects currently under construction, funded by CFI IF 2015 award
 - Significant initial R&D support from NSERC in 2013, 2014
- Phase-2 Upgrades
 - NSERC RTI awards in 2016 and 2017 for R&D phase
 - Construction funding from CFI in IF 2017 competition:
 - LAr Electronics, ITk, Upgrade Common Fund
 - Award Finalization process underway (condition lifted in mid-May)

• Computing:

- Tier-1 hardware refresh also funded in IF 2017 competition (BCKDF matching)
- CyberInfrastructure award for personnel (including CERN-based)
- Canadian contributions to LHC \rightarrow HL-LHC upgrade still being pursued
 - CERN has requested that we contribute to the HL-LHC accelerator upgrade
 - We made significant contributions to the original LHC construction

Proposed 🍁 Contribution to LHC Accelerator Upgrade

- The heart of the HL-LHC upgrade are the "crab cavities" that rotate the proton bunches before collision, to maximize the overlap
- Canada has been asked to contribute half of the "cryomodules" that house these devices:
 Crab cavity
 Crab cavit
 - builds on existing expertise at TRIUMF
 - Canadian industry would be an essential partner
- Cost is \$12M: \$10M in new funds from the federal government + \$2M from TRIUMF
- Discussed in meeting of CERN DG and Science Minister Duncan in Nov 2017
- Crab-cavity test facility part of CERN visit by Canadian Chief Science Advisor in May.
- Decision expected soon

