On possible low efficiency of RD technique at large storage rings like FCCee and CEPC

(remarks stimulated by Koop's simulations)

S.A.Nikitin 27-29 Nov. 2017

Two cases of modulation resonance manifestation

Non-correlation in modulation resonance crossing due to synchrotron oscillations: $\chi = \frac{v^2}{v_\gamma^3 \tau_p f_0} \ge 1$ Diffusion of precession phase ≥ 1 per period of modulation. ν is spin tune; ν is synchrotron tune; τ is polarization time; τ is revolution frequency.

In accordance with spin resonant diffusion theory by Ya.S. Derbenev and A.M. Kondratenko: **Yes correlation** (χ <<1) \rightarrow scanning depolarizer with spectrum line width $\delta\omega_d/\omega_0 < \nu_y$ 'sees' every modulation resonance as isolated one.

No correlation $(\chi >>1) \rightarrow$ modulation resonances are not isolated. Spin diffusion rate depends on total effect of set of modulation resonances overlapped by spin tune spread.

Depolarizer efficiency in presence of synchrotron modulation of spin motion

Rate of depolarization by RF flipper as applied to isolated spin resonance:

$$\tau_d^{-1} \approx \frac{\left(\omega_0 | w_d |\right)^2}{\delta \omega_d}$$

 $\left|w_d^{}\right|^2$ is power of spin perturbation due to RF flipper.

At large spin tune spread $\sigma_{\nu} = \sqrt{2}\nu\sigma_{E} >> \nu_{\gamma}$ (neglecting synchrotron tune as a distance between neighboring resonances):

$$\tau_d^{-1} \sim \frac{\omega_0 |w_d|^2}{\sigma_v} I_0 \left(\frac{\sigma_v^2}{v_\gamma^2} \right) \cdot \exp \left(-\frac{\sigma_v^2}{v_\gamma^2} \right) << \frac{(\omega_0 |w_d|)^2}{\delta \omega_d}$$

LEP fortunate case

Owing to large value of synchrotron tune the modulation resonances at LEP were 'isolated'. It enabled the RD technique to be sufficiently effective.