Energy Distribution in FCC-ee with Beamstrahlung (updated)

Dmitry Shatilov

BINP, Novosibirsk

The Model

- Due to symmetry, "half ring" collider is considered with one IP.
- At this stage we used linear lattice with damping and Gaussian noise.
 No explicit energy loss in the arcs!
- IP is located symmetrically between RF sections, so we assume the energy at the IP is the "mean energy". In fact, IR region is not symmetrical.
- There is no dispersion at the IP, thus there is no correlations between dE/E and transverse coordinates. However, correlations between $\sigma_{\rm E}$ and transverse coordinates appear due to beamstrahlung.
- In simulations, particles collide with the slices of the opposite bunch, not with particles. So we account only energies of the test particles.
- To find out the details of energy distribution in collision, new features were recently implemented in the tracking code. Further we will discuss the results for Z only (45.6 GeV).

Absolute Value of Transverse Force for Flat Beams

Due to the crossing angle, particles traverse the opposite bunch horizontally.

Maximum beamstrahlung: $|y| > 2\sigma_v$

Maximum luminosity: $|y| < 2\sigma_y$

Equilibrium Energy Distribution

45.6 GeV

 σ_{E0} = 3.80E–4, σ_{E} = 1.32E–3

Black line: Gauss with σ_{E} = 3.4 σ_{E0}

Energy acceptance: 1.3% = 34.2 σ_{FO}

80 GeV

 $\sigma_{F0} = 6.60E-4$, $\sigma_{F} = 1.53E-3$

Black line: Gauss with $\sigma_{\rm E}$ = 2.3 $\sigma_{\rm E0}$

Energy acceptance: 1.3% = 19.7 σ_{EO}

More asymmetric distribution.

Energy Spread vs. Other Coordinates, 45.6 GeV

Beamstrahlung depends on Y-coordinate, but it is "fast" variable. "Slow" variable is betatron amplitude, so we have similar $\sigma_{\!\scriptscriptstyle F}$ dependence on P_y.

As a result, the energy spread also increases at the longitudinal tails.

Energy Spread vs. Other Coordinates, 80 GeV

More asymmetric dependence on Z.

Energy Change due to Crossing Angle

- Transverse kick from a charged "slice" of the opposite bunch is perpendicular to its trajectory (in ultra-relativistic case).
- Due to the crossing angle (actually, large Piwinski angle), transverse kicks have longitudinal components for the particles, and therefore affect their energy.
- The signs of energy change are different "before" and "after" IP.
- The whole energy change depends on the particle's Z-coordinate.
- Thus, beam-beam interaction acts as nonlinear RF cavity and results in a decrease of synchrotron tune. This effect was observed and measured at DAFNE (article in PRST-AB, 2011) .

Energy Loss & Luminosity "per Collision", 45.6 GeV

Energy Loss & Luminosity "per Collision", 80 GeV

Energy Loss Distribution, 45.6 GeV

Mean energy loss per collision: 6.77E-6 \cdot E $_0$ = 1.78E-2 \cdot $\sigma_{\rm E0}$ pprox 309 KeV

Mean collision energy: $(1+1.3E-6) \cdot E_0$ Without beamstrahlung – the same!

Calculated as:
$$\langle E \rangle = \frac{\sum E_c L_c}{\sum L_c}$$

Collisions with every slice of the opposite bunch

Energy Loss Distribution, 80 GeV

Mean energy loss per collision: 2.0E-5 \cdot E $_0$ = 3.03E-2 \cdot $\sigma_{\rm E0}$ \approx 1.6 MeV

Mean collision energy: $(1+1.14E-6) \cdot E_0$

Calculated as:
$$\langle E \rangle = \frac{\sum E_c L_c}{\sum L_c}$$

Collisions with every slice of the opposite bunch

Summary

- Shift of "collision energy" due to beamstrahlung is very small.
- Shift of "collision energy" due to the crossing angle is about 10⁻⁶.
- Some results are not clear yet, to answer all questions we need more simulations.
- Presentation will be updated to show both Z and W in the same plots for better comparison.