

Study of Λ , Ω and Ξ production on pp collisions at LHC energies in the SPM framework.

Alejandro Contreras Munive^{*1}, Irais Bautista Guzmán^{1,2}

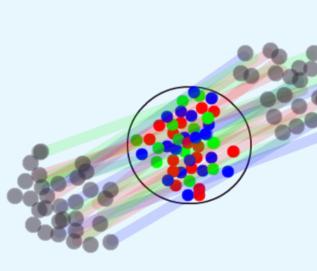
¹Facultad de Ciencias Físico Matemáticas, Beneméritra Universidad Autónoma de Puebla.

²Cátedra Conacyt

Abstract

QGP an exotic state of matter is created on heavy Ion collisions (nuclear collisions), recent results show some signals that indicate a phase transition in pp collisions, it's well known that in the presence of QGP the production of baryons and mesons shows a clear modification, we study this observable as a signal of a deconfinament in the system, in concrete, the production of multi-strange baryons, by using the String Percolation Model.

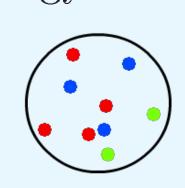
The Model

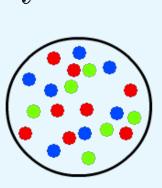


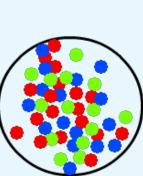
The String Percolation Model, is based on a two-dimentional percolation theory, which assumes that the color fields created at

the time of a collision are strings, when this strings are projected in the impact parameter plane they form small discs[1][2] with radius $r_0 = .25$ fm taking from QCD bilocal correlation functions.

When the system reaches a critical density of strings, a cluster is formed, which indicates the presence of a geometrical phase transition and a connected system. In the model we define a quantity related with the fraction of area occupied by the discs, the Critical Parameter of String Color Density, defined as: $\zeta^t = (S_0/S)\overline{N}^s$, where \overline{N}^s is the average of the number of strings in the cluster: $\overline{N}^s = 2 + 4 \frac{S_0}{S} \left(\frac{\sqrt{s}}{m_p} \right)^{2\lambda}$ and is evident that depends on the energy directly.







For this system the geometric scaling gives the Factor Reduction Color: $F(\zeta^t) \equiv \sqrt{(1-e^{-\zeta^t})/\zeta^t}$ [1]. Where the transverse momentum distribution is given by:

$$\frac{1}{N} \frac{d^2 N}{d\eta dp_T} = \frac{a \left(p_0 \frac{F(\zeta_{pp})}{F(\zeta_{HM})} \right)^{\alpha - 2}}{\left[p_0 \sqrt{\frac{F(\zeta_{pp})}{F(\zeta_{HM})}} + p_T \right]^{\alpha - 1}}.$$
 (1)

In this equation, a,p_0 y α are parameters obtained fitting minimum bias distributions for fixed energies:

\sqrt{S}	a	p_0	α
0.9	23.29 ± 4.48	$1.82 \pm .54$	9.40 ± 1.79
2.76	22.48 ± 4.20	$1.54 \pm .46$	7.94 ± 1.41
7	33.11 ± 9.31	$2.31 \pm .87$	9.78 ± 2.53

Cuadro 1: Parameters for transverse momentum distributions.

By including the differentiation for the spectra by species for kaons (κ) and protons (p) [3],[4] we get:

$$\frac{1}{N} \frac{d^2 N}{d\eta dp_T} = \beta \exp\left(\frac{-m_{\kappa,p}^2 F(\zeta_{pp})}{\langle p_T \rangle^2 + \langle p_{\kappa,p} \rangle^2}\right) \frac{1}{N} \frac{d^2 N}{d\eta dp_T} \bigg|_{\pi} (2)$$

Where β is a normalization parameter corresponding to the species production and energy, obtained fitting experimental data from CMS [5], for Minimum Bias and peripheral events, we obtain the following parameters:

\sqrt{S}	$F(\zeta_{pp})$
0.9	0.91456144
2.76	0.885818608
7	0.852129259

Cuadro 2: Values for $F(\zeta_{pp})$ at different energies.

\sqrt{S}	B
V	F 1 00
0.9	0.5 ± 0.02
2.76	$.3 \pm .01$
7	$.31 \pm .02$

Cuadro 3: Normalization parameters by energy for transverse momentum distribution.

Fits for κ , p, π , Ω [6] and Ξ [6] at $\sqrt{s} = .9.2.76$ y 7 TeV

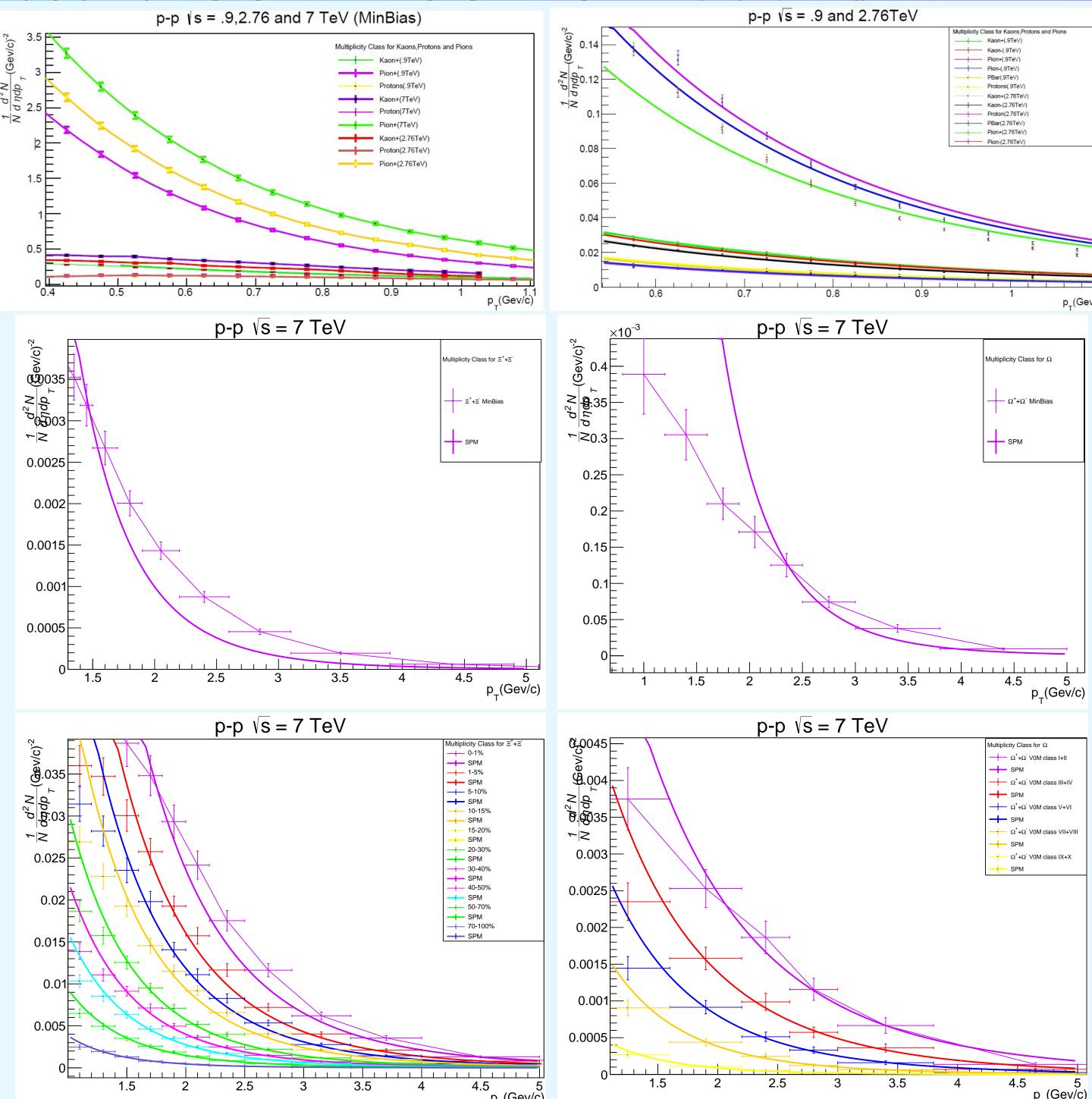


Figura 1: Fits of momentum distribution for ,9TeV,2,76TeV and 7TeV on peripheral, MinBias collisions, and different multiplicities.

Results

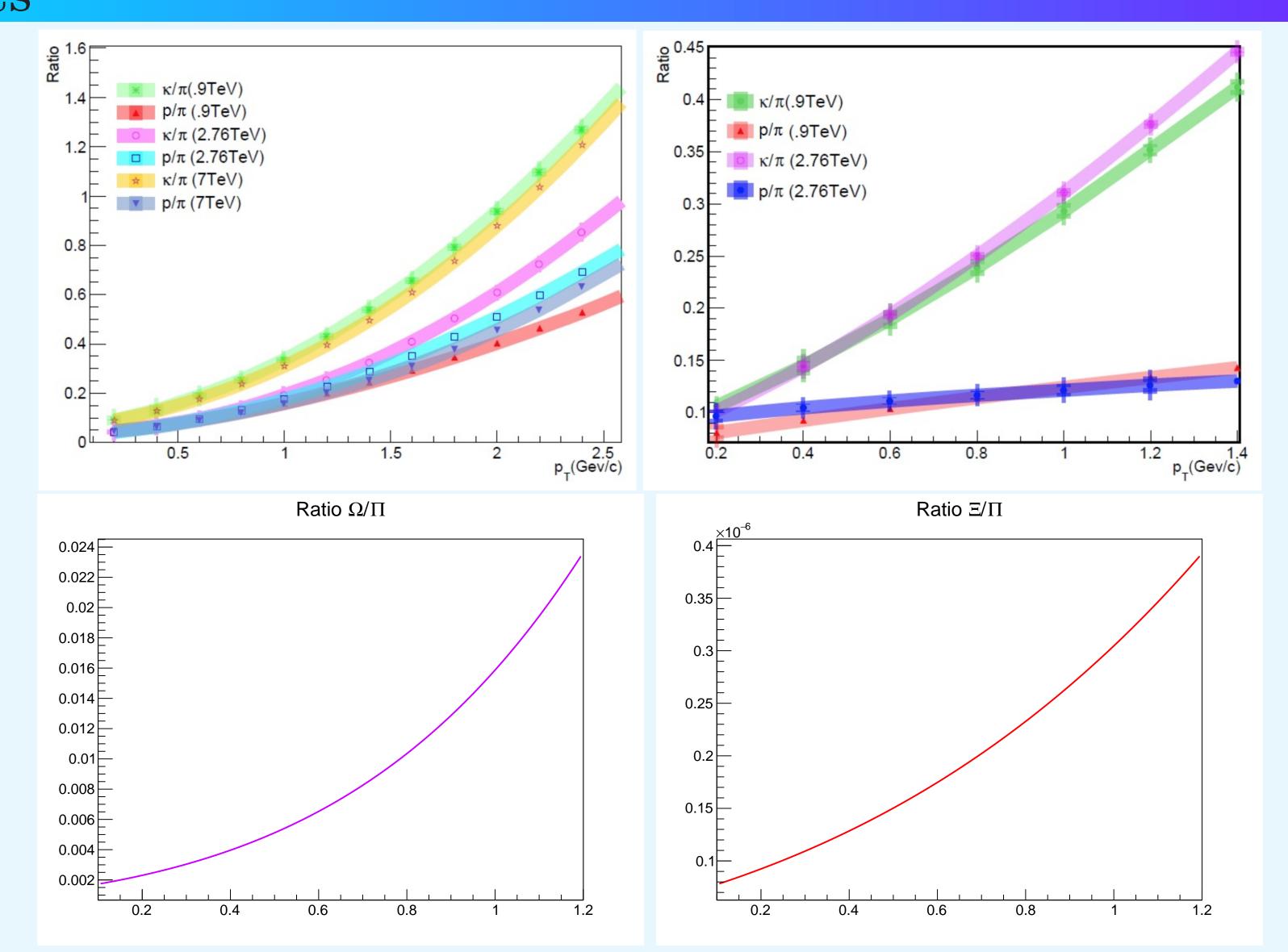


Figura 2: Ratio productions for proton/ π and π/κ on peripheral an MinBias collisions, Ξ/π and Ω/π .

Conclusions

For the p/π and κ/π ratios, we can see an enhancement in the variation of the production of κ , p with respect to π , in both cases: MinBias and peripheral collisions, as we increase the p_t . For the multy-strange baryons, (Ω, Ξ) we just study the ratio of the most central events (0-5%) for Ω and Ξ , with the data of MinBias for π , we can see a similar behaviour, but is necessary to study each multiplicity with its correspondant. So, as is evident in our fits, our model can reproduce in a good way the experimental data, in consequence, we have some signals of a phase transition, in the future, we hope to extend the analysis with the complete set of data for pions for different multiplicities.

References

[1]M. A. Braun, J. D. Deus, A. S. Hirsch, C. Pajares, R. P. Scharenberg & B. K. Srivastava, Phys. Rept. 599 (2015) 1.

[2]I. Bautista, A. Fernández, P. Ghosh, Phys. Re D 92 (2015) 7

[3]I. Bautista, L. Cunqueiro, J. D. de Deus and C. Pajares, J. Phys. G 37 (2010) 015103.

[4]I. Bautista and C. Pajares, Phys. Rev. C 82 (2010) 034912.