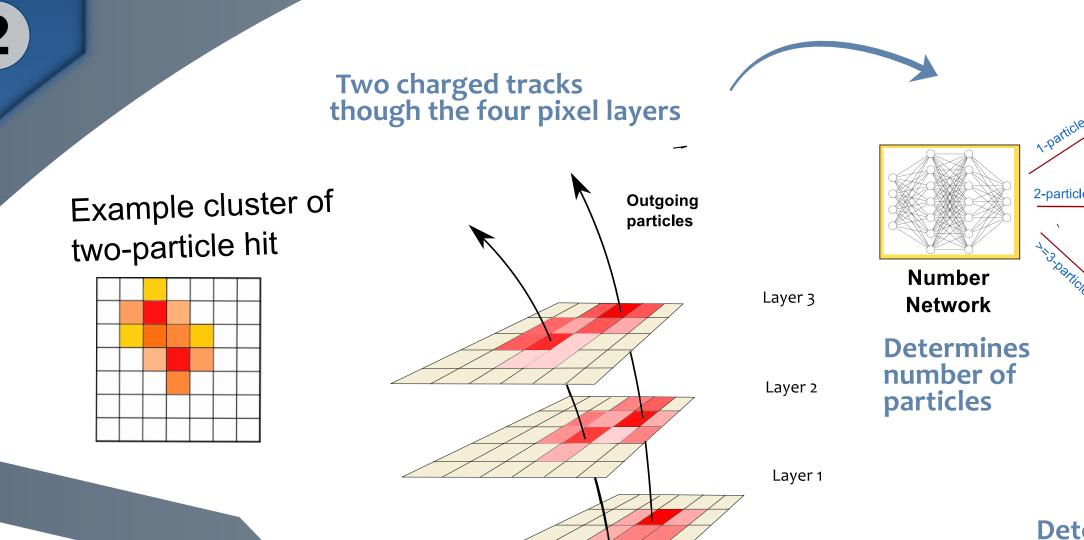
Merged hits in dense environment

Dense Environment

- A single particle track activates multiple pixel in a pixel layer and forms a cluster (corresponds to a hit)
- In the dense environment multiple particle tracks come very close to each other resulting merged clusters
- This ambiguity is solved by ambiguity solver in ATLAS track reconstruction. It determines hit to track association
- 10 neural networks (NN) are used to determine hit multiplicity, hit positions and associated uncertainties of a given charge map
- New algorithm: replaces 9 NNs with 3 Mixture Density Networks



hit positions

Determines hit position uncertainty

Error

Networks

Replaced in new algorithm

Current algorithm: 10 neural networks

Network input variables

- 7x7 charge matix
 - length-7 vector of pixel pitches

3

Current

algorithm

ATLAS Neural Networks

(ATLAS NN)

- in the local y direction
- detector region
- (barrel or endcap) which Layer
- track incident angle (φ, η)

The performance of the current NNs is not optimal

Network training

Goal: model the underlying generator

incident angle of track candidate

Layer information

(Endcap/Barrel)

Network Outputs

- particle multiplicity

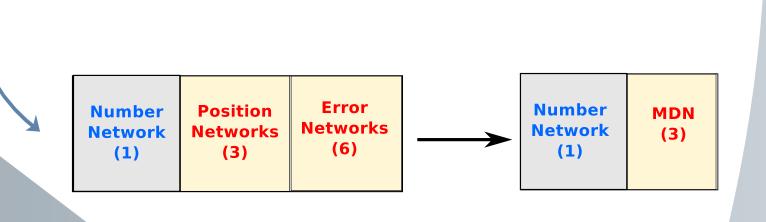
- local (x, y) position

- uncertainties

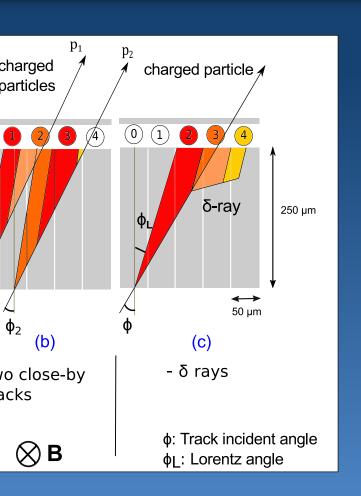
 $\mathsf{Map}\,f:\mathbf{x}\longrightarrow\mathbf{t}$

of the data

Replace the position and error networks with Mixture Density Networks (MDN)



As a result multiple tracks get associated to one cluster (or hit)



Pixel sensor

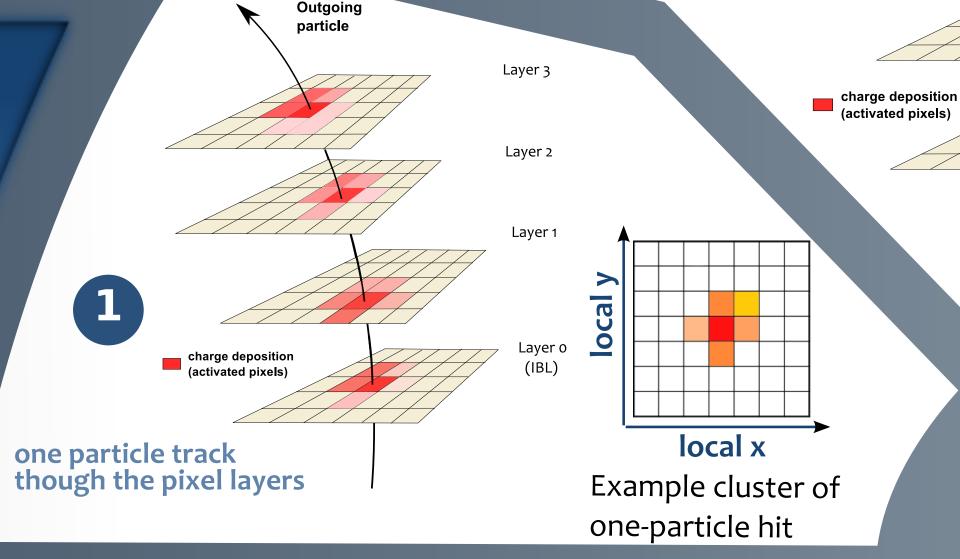
Pixel cluster splitting using

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

0.2 ATLAS Simulation Preliminary

Mixture Density Network



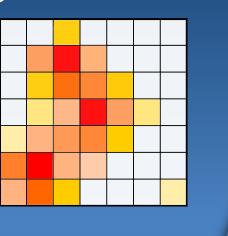
What are we doing?

Number of particles

Studying pixel cluster splitting algorithm

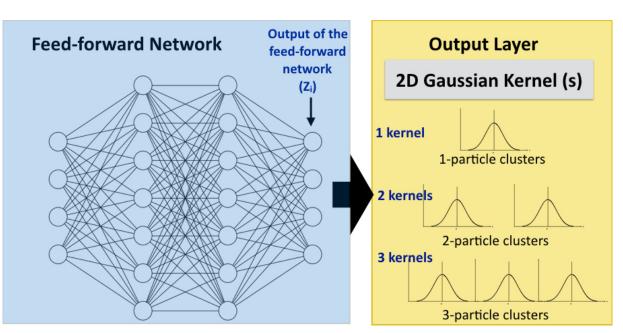
Start from 7x7 pixel charge map

Hit positions and associated uncertainties



MDN: Feedforward network + Gaussian kernel (s)

MDN Input Same as the current networks

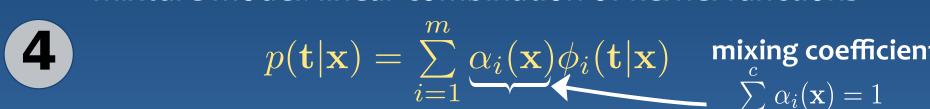


Kernel parameters (μ, σ)

Mixture Density Network (MDN)

Gaussian approximation can be generalized to a mixture model

mixture model: linear combination of kernel functions



Here only Gaussian kernels are considered: Gaussian mixture model (GMM)

$$\phi_i(\mathbf{t}|\mathbf{x}) = \frac{1}{(2\pi)^{c/2}\sigma_i(\mathbf{x})^c} \exp\left\{-\frac{||\mathbf{t} - \mu_i(\mathbf{x})||^2}{2\sigma_i(\mathbf{x})^2}\right\}$$

Build the likelihood using the gaussian mixture model Minimize $-\ln \mathcal{L}$

GMM parameters: - mixing coefficient (α) - mean (μ) - std (σ)

Results

Elham E Khoda

References

University of British Columbia

ATLAS Collaboration, ATL-PHYS-PUB-2018-002

Metric for position estimation: Residual: $(x_{pred} - x_{true})$ and $(y_{pred} - y_{true})$

ATLAS Collaboration, Journal of Instrumentation 9 (2014) P09009

C. Bishop, Neural Computing Research Group Report: NCRG/94/004

ATLAS Collaboration, ID tracking public plots (IDTR-2019-006)

Metric for uncertainty estimation: Pull: $x_{\text{pred}} - x_{\text{true}} = y_{\text{pred}} - y_{\text{true}}$

Goal Residual: narrow width with $\mu = 0$ (Gaussian) **Pull:** distribution with $\sigma=1$,

6

 $\mu = o (Gaussian)$ $\sigma_{x,\mathrm{pred}}$

- Training and performance studies are done on MC samples
- New MDN algorithm shows on average better performance in estimating both position and uncertainty
- Since MDN has fewer steps compared to current algorithm it could be much faster

Performance plots Residual and pull distributions

MDN
2D Gaussian Kernel
μ = 0.03, rms = 1.00

PYTHIA8 dijet, 1.8 < p_ < 2.5 TeV

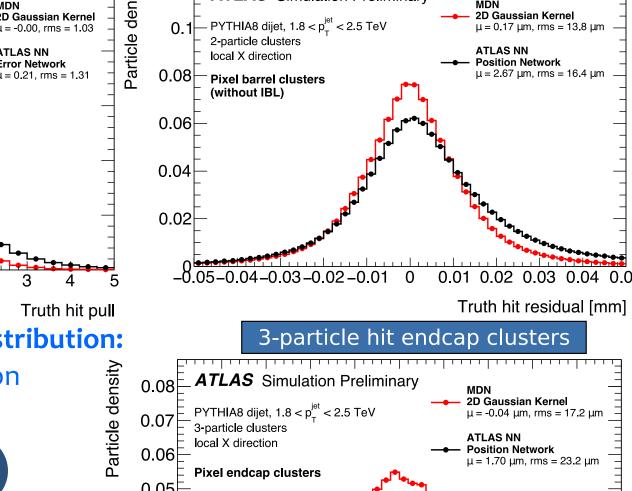
0.2 local X direction

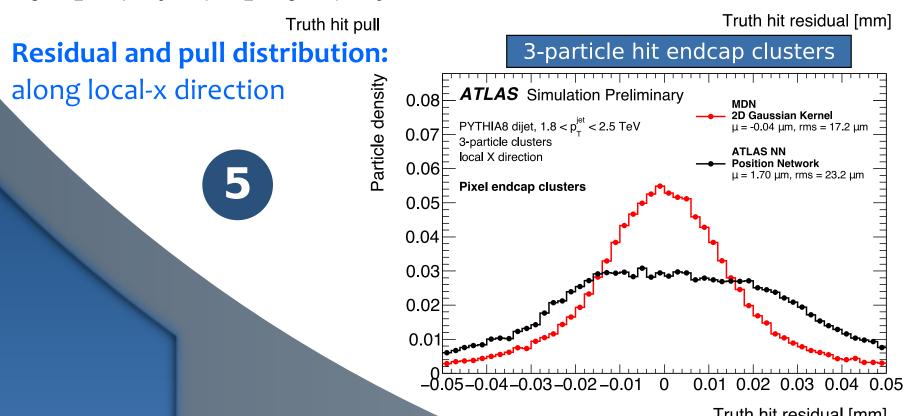
1-particle hit IBL clusters

2-particle hit barrel (without IBL) clusters 0.25 ATLAS Simulation Preliminary **ATLAS** Simulation Preliminary

Pull distribution:

along local-y



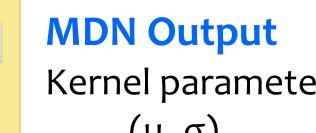


Truth hit residual [mm] **Residual distribution:** along local-x direction

Mixture Density

kernel parameters = $g(z_i)$

- Estimates position and uncertainty in a single network
- Reduces the number of steps compared to the old algorithm



Input ${f x} = \{x_1, x_2,, x_d\}$

Output $\mathbf{t}=\{t_1,t_2,....,t_c\}$

This can be described as the input-target joint distribution: P(x, t) = p(t|x) p(x)

Minimize the Loss: $E(t_{
m pred}-t_{
m true},{f w})$

Loss is a function (E) of predicted value and true value

 \mathbf{w} = network weight vector; \mathbf{q} runs over the examples

 $f_k(\mathbf{x}^q; \mathbf{w})$ network mapping

approach

Commonly used in regression: Mean Square Error (MSE)

 $E(\mathbf{w}) = \frac{1}{2} \sum \sum \left[f_k(\mathbf{x}^q; \mathbf{w}) - t_k^q \right]^2$

Likelihood maximization

minimize loss ≡ likelihood maximization

 $p(t_k|\mathbf{x}) \sim \text{Gaus}(f_k(\mathbf{x};\mathbf{w}),\sigma)$

 σ = constant global variance

Minimize $-\ln \mathcal{L}$

classification problems

regression problems

Not optimal for several

This approach is optimal for

 $p(\mathbf{t}^q|\mathbf{x}^q) = \prod p(t_k^q|\mathbf{x}^q)$

Build the likelihood:

Assume: $p(t_k|x)$ is Gaussian distributed

 $p(\mathbf{t}^q|\mathbf{x}^q)p(\mathbf{x}^q)$

