ATLAS

Merged hits in dense environment EXPERIMENT Network training

® A single particle track activates multiple pixel in a pixel layer and forms a cluster 0
(corresponds to a hit)

Input X — {LIZl,LEQ,....,QEd}
Output t = {tl,tg, ....,tc}

Map f : x — t

Dense Environment Goal: model the underlying generator

Replaced in new algorithm of the data

® In the dense environment multiple particle tracks come very close to each other
resulting merged clusters

® As aresult multiple tracks get associated to one cluster (or hit) 9 Two charged tracks /\

This can be described as the input-target joint distribution: P(x, t) = p(t|x) p(x)

Minimize the Loss: E(tpred — ttruea W)

® This ambiguity is solved by ambiguity solver in ATLAS track reconstruction. though the four pixel layers N
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Assume: p(t,|x) is Gaussian distributed
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The performance of the current NNs is not optimal

Replace the position and error networks with

- track incident angle (¢, n)
® Number of particles . .
Mixture Density Networks (MDN)
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