Searching for axion-like particles in light-by-light scattering with proton tagging at the LHC CBB, S. Fichet, G. von Gersdorf, C. Royon, JHEP06 (2018)131

LHCP 2019 May 20th-May 25th, Puebla, Mexico

Cristian Baldenegro-Barrera, University of Kansas, US, E-mail address: cbaldenegro@ku.edu

Introduction

- One of the main goals of Particle Physics is the search for New Physics;
- Photon-physics above the electroweak scale opens new paths for novel searches for New Physics complementary to the standard efforts at the LHC;
- Of particular interest are pseudoscalars weakly coupled to SM particles, known as axion-like particles (ALPs).
- ALPs appear in many extensions of the SM:
- Pseudo Nambu-Goldstone bosons after spontaneous breaking of a global symmetry;
- String theory landscape;
- Mediators between hidden sectors and the SM;

Axion-like particles (ALPs)

- We focus solely on the coupling of ALP to photons;
- No further assumptions on the ALP-SM particles couplings are necessary!
- Model ALP-photon coupling via conventional dimension-five operator,

ALP-photon interaction

6. Background

Exclusive background (irreducible)

- SM light-by-light scattering;
- Includes contributions from quark, charged lepton, and W boson boxes
- Small cross section ($\sim 10^{-1}$ fb) for mass range accessible w/ proton taggers;
- Simulated in Forward Physics Monte Carlo generator.

Event selection

Non-exclusive background (reducible)

- Non-exclusive diphoton production overlapped with diffractive protons from secondary interactions (pileup) is the dominant background.
- Fakes from jets and electrons (positrons) overlapped with diffractive protons.
- Reducible by matching forward-central kinematics.
- Simulated with PYTHIA8.

$$\mathcal{L}_a = \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 + \frac{1}{f} a F \tilde{F} \qquad (1)$$

where *a* is the ALP field, $\frac{1}{f}$ is the ALP-photon coupling;

Partial decay width,

$$\Gamma(a \to \gamma \gamma) = \frac{1}{4\pi} \frac{m_a^3}{f^2} \tag{2}$$

Searching for ALPs in light-by-light scattering

- ALPs coupled to photons induce anomalous light-by-light scattering (LbL);
- Search in ultraperipheral heavy-ion collisions (Knapen, Lin, Lou, Melia, PhysRevLett.118.171801);
- -Strong exclusion power (Z^4 enhancement of photon-flux);
- ALP mass range is limited in UPCs (1 GeV to 100 GeV);
- Search relies on bump-search over SM-LbL lineshape.
- This work: exclusive diphoton production in p-p collisions with proton tagging:
- Access larger invariant diphoton mass (600 GeV to 2 TeV)
- \hookrightarrow Sensitivity is enhanced since ALP production rate increases with $m_{\gamma\gamma}$;
- Production rates are small (~ 1 fb);
- Search does not rely on bump-search strategy, since SM LbL is highly suppressed in p-p collisions.

- Two photons with minimum $p_T^{\gamma} > 100$ GeV and $|\eta^{\gamma}| < 2.5;$
- Protons reconstructed on each side with $0.015 \leq \xi \leq 0.15$, where the proton taggers are efficient;
- Exclusive processes topology selection:
- $-\left|\Delta\phi_{\gamma\gamma}-\pi\right|<0.01$ rad $-p_{T.2}^{\gamma}/p_{T.1}^{\gamma} > 0.95$
- Minimum diphoton invariant mass of $m_{\gamma\gamma} >$ 600 GeV; suppresses background with rate steeply falling $m_{\gamma\gamma}$ rate.
- Forward-central system matching: strong rejection of non-exclusive processes!
- Assume 300 fb $^{-1}$ of data for our projections in p-p collisions at 13 TeV w/ pileup of 50 interactions;
- Background dominated by inelastic diphoton production overlapped with diffractive protons (in red);
- Signal instance in cyan at $m_a = 1.2$ TeV for $f^{-1} = 0.1 \text{ TeV}^{-1};$

Exclusive selection 8.

Photon-exchange in p-p collisions

- Central exclusive reactions $pp \rightarrow p + X + p$ can be studied by measuring X in a central detector and the intact protons pp with forward proton detectors at \sim 210 m w.r.t. the interaction point.
- Proton fractional momentum loss $\xi = \Delta p/p$ is reconstructed with the forward proton detectors.
- Can select central exclusive processes by comparing $m_{\gamma\gamma}$ with $m_{pp} = \sqrt{\xi_1 \xi_2 s}$ and $y_{\gamma\gamma}$ with $y_{pp} = \frac{1}{2} \ln(\xi_1 / \xi_2).$
- Acceptance in mass of about $300 \leq m_{\gamma\gamma} \leq$ 2000 GeV for proton taggers installed at the LHC with ATLAS and CMS experiments

Protons remain intact after interaction \rightarrow Full reco. of final state!

Forward proton detectors at the LHC

- Non-exclusive events can be rejected by comparing the kinematics of forward and central systems, leading to a robust background suppression;
- Ratio of $m_{\gamma\gamma}$ with diphoton mass reconstructed with forward protons $m_{pp} = \sqrt{s\xi_1\xi_2}$, exclusive processes peak at 1;
- Compare rapidity reconstructed centrally $y_{\gamma\gamma}$ with diphoton rapidity reconstructed with forward protons $y_{pp} = \frac{1}{2} \log(\frac{\xi_1}{\xi_2})$, exclusive processes peak at 0;
- Results

210 m / 220 m

- Diphoton detected in central detector and the intact protons are tagged with forward proton detectors; final state is completely reconstructed;
- LHC magnetic lattice (blue rectangles) used as a precise proton longitudinal momentum spectrometer;
- ATLAS Forward Physics (AFP) and CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are able to operate (and have collected data) with forward proton spectrometers at high instantaneous luminosities;
- Photon-physics above electroweak scale is a reality!

Expected 95% CL exclusion limit in central exclusive production assuming $\mathcal{B}(a \to \gamma \gamma) = 1$. Strong exclusion power for resonant ALP production in the collider-bounds region (down to 1/f = 0.02 TeV⁻¹)!

Conclusions and outlook 10.

- We examined the possibility of searching for ALPs in central exclusive production of photon pairs in p-p collisions at 13 TeV for an integrated luminosity of 300 fb⁻¹ with proton tagging;
- We found that the discovery potential is competitive with the standard multi-photon searches at the LHC for ALP masses between 600 GeV to 2 TeV;

