Dark Matter signals at the LHC from a 3HDM A. Cordero, J. Hernandez-Sanchez, V. Keus, S.F. King, S. Moretti,

D. Rojas-Ciofalo*, D. Sokolowska

JHEP 1805 (2018) 030

*University of Southampton and NExT Institute

D.Rojas-Ciofalo@soton.ac.uk

We analyse new signals of Dark Matter (DM) at the Large Hadron Collider (LHC) in the Z_2 I(2+1)HDM. An interesting signal to study is the loop induced decay of the next-to-lightest scalar, $H_2 \to H_1 f \bar{f}$ $(f = u, d, c, s, b, e, \mu, \tau)$. This is a smoking-gun signal of the 3HDM since it is not allowed in the IDM and is expected to be important when H_2 and H_1 are close in mass. In practice, this signature can be observed in the cascade decay of the SM-like Higgs boson, $h \to H_1 H_2 \to H_1 H_1 f \bar{f}$ into two DM particles and di-leptons/di-jets, where h is produced from either gluon-gluon Fusion (ggF) or Vector Boson Fusion (VBF). However, this signal competes with the tree-level channel $q\bar{q} \to H_1 H_1 Z^* \to H_1 H_1 f\bar{f}$.

The model

The CPC scalar potential

The potential can be written as:

$$V = V_0 + V_{Z_2}, (1)$$

$$V_0 = -\mu_1^2 (\phi_1^{\dagger} \phi_1) - \mu_2^2 (\phi_2^{\dagger} \phi_2) - \mu_3^2 (\phi_3^{\dagger} \phi_3) + \lambda_{11} (\phi_1^{\dagger} \phi_1)^2 + \lambda_{22} (\phi_2^{\dagger} \phi_2)^2 + \lambda_{33} (\phi_3^{\dagger} \phi_3)^2$$
 (2)

$$+\lambda_{12}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{23}(\phi_{2}^{\dagger}\phi_{2})(\phi_{3}^{\dagger}\phi_{3}) + \lambda_{31}(\phi_{3}^{\dagger}\phi_{3})(\phi_{1}^{\dagger}\phi_{1}) +\lambda'_{12}(\phi_{1}^{\dagger}\phi_{2})(\phi_{2}^{\dagger}\phi_{1}) + \lambda'_{23}(\phi_{2}^{\dagger}\phi_{3})(\phi_{3}^{\dagger}\phi_{2}) + \lambda'_{31}(\phi_{3}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{3}),$$

The minimum of the potential is realised for the following point:

$$V_{Z_2} = -\mu_{12}^2 (\phi_1^{\dagger} \phi_2) + \lambda_1 (\phi_1^{\dagger} \phi_2)^2 + \lambda_2 (\phi_2^{\dagger} \phi_3)^2 + \lambda_3 (\phi_3^{\dagger} \phi_1)^2 + \text{h.c.}.$$
(3)

We shall no consider CPV here, therefore we require all parameters of the potential to be real.

$$\phi_1 = \begin{pmatrix} \frac{\phi_1^+}{H_1^0 + iA_1^0} \\ \frac{H_1^0 + iA_1^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} \frac{\phi_2^+}{H_2^0 + iA_2^0} \\ \frac{H_2^0 + iA_2^0}{\sqrt{2}} \end{pmatrix}, \quad \phi_3 = \begin{pmatrix} \frac{G^+}{V + h + iG^0} \\ \frac{V + h + iG^0}{\sqrt{2}} \end{pmatrix}, \quad (4)$$

with $v^2 = \mu_3^2/\lambda_{33}$. ϕ_1 and ϕ_2 are the inert doublets (charge -1 under Z_2). ϕ_3 is the active (SM) doublet (charge 1 under Z_2 , same as SM particles), with $m_h^2 = 2\mu_3^2 = (125 \text{GeV})^2$. We choose our parameters so that

$$m_{H_1} < m_{H_2}, m_{A_{1,2}}, m_{H_{1,2}^{\pm}},$$

then H_1 is our DM candidate.

Simplified couplings

We focus on a simplified case in where:

$$\mu_1^2 = n\mu_2^2, \quad \lambda_3 = n\lambda_2, \quad \lambda_{31} = n\lambda_{23}, \quad \lambda'_{31} = n\lambda'_{23},$$
 (5)

 $n \to 0$, model reduces to the IDM.

Input parameters:

$$m_{H_1}, m_{H_2}, g_{H_1 H_1 h}, \theta_a, \theta_c, n$$
 (6)

 $g_{H_1H_1h}$ Higgs-DM coupling. $\theta_{a,c}$ angles that diagonalise pseudoscalar and charged sectors. n is related to θ_h :

$$\tan^2 \theta_h = \frac{m_{H_1}^2 - n m_{H_2}^2}{n m_{H_1}^2 - m_{H_2}^2}.$$
(7)

 $n \to 1$ equalise both inerts, $\theta_h = \pi/4$. We need: $m_{H_1}^2 < n m_{H_2}^2$ and $m_{H_1}^2 < \frac{1}{n} m_{H_2}^2$. We take $n < 1 \Rightarrow$ $\tan 2\theta > 0$ for $\theta_h < \pi/4$.

Other values of n is a matter of reparametrisation of the potential.

Decays at the LHC

Inert decays lead to the resulting detector signature $\mathbb{E}_T f \bar{f}$ $(f = u, d, c, s, b, e, \mu, \tau)$. Access to the inert sector can be obtained through the SM-like h or Z/W^{\pm} .

ggF production

$$gg \to h \to H_1H_2 \to H_1H_1\gamma^* \to H_1H_1f\bar{f}$$

- Benchmarks are designed to increase this signature
- We try larger $g_{hH_1H_1}$ if it is consistent with DM constraints
- Promissing signature if others decays are suppressed and $m_{H_1} + m_{H_2} \approx m_h$

VBF production

$$q_i q_j \to q_k q_l H_1 H_2 \to H_1 H_1 \gamma^* \to H_1 H_1 f \bar{f}$$

Background signature (significant)

$$q\bar{q} \to Z^* \to H_1 H_1 Z^{(*)} \to H_1 H_1 f \bar{f}$$
 and
$$q\bar{q} \to Z^* \to H_1 A_i \to H_1 H_1 Z^{(*)} \to H_1 H_1 f \bar{f}$$

Calculation

The general structure for the amplitude is:

$$\mathcal{M} = ie\bar{v}(k_1)\gamma^{\nu}u(k_2)\frac{ig_{\mu\nu}}{(p_3 - p_2)^2}[A(p_3 + p_2)^{\mu}]$$
(8)

Southampton

Figure 1: Triangle and bubble diagrams contributing to the $H_2 \to H_1 \gamma^*$ decay, where the lightest inert particle is absolutely stable and hence invisible. while γ^* is a virtual photon that couples to fermion-antifermion pairs.

• We add an effective term $H_2 \to H_1 f f$:

$$L_{\text{eff}} = L_{\text{I(2+1)HDM}} + iK_f(H_1\partial_{\mu}H_2 - H_2\partial_{\mu}H_1)f\gamma^{\mu}f$$

• Amplitude:

$$\mathcal{M} = iK_f \bar{v}(k_1) \gamma^{\mu} (p_3 + p_2)_{\mu} u(k_2) \Rightarrow |\mathcal{M}|^2 \sim K_f^2$$

• Calculate $\Gamma(H_2 \to H_1 \gamma^* \to H_1 f \bar{f})$ with LoopTools then compare (8) with (9):

$$K_f^2 = \frac{16\pi^3 m_{H_2}^3 \Gamma(H_2 \to H_1 f \bar{f})}{I_3},\tag{10}$$

where I_3 is a phase space integral

ullet We can use $L_{
m eff}$ for numerical scans in Calcher

Results

Figure 2: The anatomy of scenario A50. The plots show the cross sections with leptonic (left) and hadronic (right) final states. The red regions are ruled out by LHC ($m_{DM} < 53 \text{ GeV}$) and by direct detection ($m_{DM} > 73 \text{ GeV}$).

Figure 3: The anatomy of scenario I5. The plots show the cross sections with leptonic (left) and hadronic (right) final states.

Figure 4: The anatomy of scenario I10. The plots show the cross sections with leptonic (left) and hadronic (right) final states.

Benchmark	$m_{H_2} - m_{H_1}$	$m_{A_1} - m_{H_1}$	$m_{A_2} - m_{H_1}$	$m_{H_1^{\pm}} - m_{H_1}$	$m_{H_2^{\pm}} - m_{H_1}$
A50	50	75	125	75	125
I5	5	10	15	90	95
I10	10	20	30	90	100

Table 1: Definition of benchmark scenarios with the mass splittings shown in GeV.

Conclusions

- A full calculation of the one-loop induced decay $H_2 \to H_1 \gamma^* \to H_1 f \bar{f}$ was performed.
- This signature would emerge from SM-like Higgs boson production (ggF and VBF) and is distinctive of the I(2+1)HDM.
- With a small mass difference between the CP-even dark scalars the final state that would appear at detector level is a single EM shower plus a subtantial E_T .
- The background process corresponds to a tree-level process which can also be present in the IDM. However, the cumulative signal of the VBF and ggF processes could be greater for DM mass $m_{DM} < m_h/2$, testable at Run 2 and 3.
- These searches included all up-to-date theoretical and experimental constraints.

Acknowledgements

D.R.C thanks support from the Royal Society Newton International Fellowships.