Heavy-flavour production and spectroscopy

Yvonne Pachmayer (Heidelberg University)

on behalf of the ALICE, ATLAS, CMS and LHCb Collaborations

7th LHCP Conference 20 May 2019

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Open-heavy flavour production

D-meson production in pp collisions

- Systematic comparison with several pQCD calculations with different schemes agreement within uncertainties
 - non-strange D mesons overestimated or underestimated in different p_{τ} ranges
 - D production tends to be underestimated by all pQCD calculations
- Data: smaller uncertainties than theoretical ones
 - larger uncertainties at low p_{τ} , dominated by factorisation and renormalisation scales of the perturbative calculations

LHCP2019

D-meson production in pp collisions

Particle ratios

• Particle species ratios at different energies: $\sqrt{s} = 5.02$, 7 TeV

ALICE Collaboration, arXiv: 1901.07979

- Sensitivity to fragmentation functions for different hadronisations of charm
 - No differences between D-meson ratios for different collision energies
 - Compatible with ratios measured in e⁺e⁻ and ep collisions
 → No dependence on collision systems
 - Agreement with models

→ Universality of D-meson fragmentation functions

Λ_c production in pp and p-Pb collisions

- p_{T} -differential result significantly underestimated by models
 - Fragmentation to heavy-flavour baryons not well understood
- Λ_c/D ratios
 - Possible p_{T} dependence and slight rapidity dependence
 - Higher than previous measurements in e^+e^- and ep collisions (R \approx 0.11-0.22 depending on p_{T} of hadron etc.)

ALICE Collaboration, JHEP04(2018)108 LHCb Collaboration, Nucl.Phys.B871(2013)1 JHEP02(2019)102 CMS Collaboration, CMS-PAS-HIN-18-009

LHCP2019

D-meson tagged jets Fragmentation Functions

- z_{μ} : momentum fraction carried by the D meson
 - Good agreement between data and models for jets < 15 GeV/c
 - Hint of a softer fragmentation function in data wrt theory in particular for higher p_{τ} jets

J/ψ production in jets Fragmentation Functions

LHCb Collaboration, Phys.Rev.Lett.118(2018)192001 CMS Collaboration, CMS-PAS-HIN-18-012, CMS-PAS-BPH-15-003

- Softer fragmentation function in data wrt to theory
 - Similar observations for J/ψ by LHCb and CMS

b-hadron production fractions in pp collisions

LHCb Collaboration, arXiv:1902.06794

- Production fractions of \overline{B}_{s}^{0} and Λ_{b}^{0} hadrons normalised to B⁻ and \overline{B}^{0} in pp at 13 TeV
 - Measurement via inclusive semileptonic decays $H_b \rightarrow H_c \ \mu \overline{\nu}_u X$
 - $f_{
 m s}/\left(f_{
 m u}+f_{
 m d}
 ight)$ slightly and $\left.\left.f_{\Lambda^0_{
 m b}}/\left(f_{
 m u}+f_{
 m d}
 ight)
 ight.$ strongly depends on ${\it
 ho_{ au}}$
 - No rapidity dependence

Radiative decay $\Lambda_{\rm b}^{0} \rightarrow \Lambda \gamma$

- $\Lambda_b^{\ 0} \rightarrow \Lambda\gamma$ measured in 1.7 fb⁻¹ of pp collisions at 13 TeV LHCb Collaboration, arXiv:1904.06697 with significance 5.6 σ
 - Proceeds via $b \rightarrow s\gamma$ flavour-changing neutral-current transition
 - Forbidden at tree level in Standard Model (SM)
 → sensitive to new particles entering the loop-level transition
 - Polarisation of photon predicted to be predominantly left-handed in SM
 - Helicity of Λ measurable \rightarrow acess to helicity structure of b \rightarrow s γ
- $B^0 \rightarrow K^{*0}\gamma$ decay as normalisation mode \rightarrow Branching fraction

 $\mathcal{B}(\Lambda_{b}^{0} \rightarrow \Lambda \gamma) = (7.1 \pm 1.5 \pm 0.6 \pm 0.7) \cdot 10^{-6}$

→ First observation of radiative decay of beauty baryon

Heavy-flavour production and PDFs

- Ratios of measurements at different energies and rapidities ALICE Collaboration, arXiv: 1901.07979 arXiv: 1905.07207 \rightarrow constrain gluon PDF at small values of Bjorken-x (10⁻⁴-10⁻⁵) LHCb Collaboration, JHEP09(2016)13 $\mathrm{d}\sigma_{\mathrm{pp}\to\mathrm{HX}} = \mathrm{PDF}_{\mathrm{a}}(x_{\mathrm{a}},\mu_{\mathrm{f}}^{2}) \otimes \mathrm{PDF}_{\mathrm{b}}(x_{\mathrm{b}},\mu_{\mathrm{f}}^{2}) \otimes \mathrm{d}\sigma_{\mathrm{ab}\to\mathrm{Q}\overline{\mathrm{Q}}}(x_{\mathrm{a}},x_{\mathrm{b}},\mu_{\mathrm{f}}^{2}) \otimes \mathrm{D}_{\mathrm{Q}\to\mathrm{H}}(z_{\mathrm{Q}},\mu_{\mathrm{f}}^{2})$ Systematic uncertainties of pQCD calculations ^{c,0}/dp₇ 7 TeV / 5.02 TeV
- reduced in ratio, due to correlation of parameters used in calculations
 - Renormalisation and factorisation scales $\mu_{_{\rm E}}$, $\mu_{_{\rm D}}$, PDF partially cancel out
 - m_{a} , Frag. Func., B.R. fully correlated

Comparison: data and theory

LHCP2019

 \rightarrow Consistent trend as a function of p_{τ} at same y

 \rightarrow Hint of different slopes for ratios for mid- to forward rapidity

Pb-Pb UPC: LHC as a yPb collider

- Ultra-peripheral (UPC) collisions: $b > R_1 + R_2$
 - Hadronic interactions strongly suppressed
 - Akin to exclusive vector meson production in electron–proton collisions, at HERA
- High photon flux
 - Well described in Weizsäcker-Williams approximation (quasi-real photons)
 - flux proportional to Z^2
 - large cross section for γ-induced reactions
- Coherent J/ψ or Y photoproduction cross section proportional to the square of the gluon density in the target
- Mass of quarkonium serves as hard scale
- Bjorken-*x* (10⁻²-10⁻⁵)
- Quarkonium photoproduction in Pb-Pb UPC gives info on gluon shadowing in nuclei at low *x*

LHCP2019

J/ψ and Y photoproduction in Pb-Pb and p-Pb collisions

 \rightarrow Models with moderate nuclear gluon shadowing in agreement with data \rightarrow Constrain the gluon distributions at low values of Bjorken-*x* in global PDF fits

```
LHCP2019
```

Quarkonium production

J/ψ in pp collisions at 5 TeV

ALICE Collaboration, arXiv: 1905.07211 ATLAS Collaboration, Eur.Phys.JC76(2016)1 Eur.Phys.JC78(2018)171 CMS Collaboration, Eur.Phys.JC77(2017)269

- Inclusive J/ ψ production down to zero p_{T}
- Cross section approx. logarithmic increase in √s
- Large model uncertainties
- Steady increase of $< p_T^>$ and $< p_T^2 >$ with energy
 - For fixed Bjorken-x
 p-exchange Q²
 grows with energy
 - Faster increase of bb compared to cc cross section

 \rightarrow Hardening of $J/\psi p_{\tau}$ spectrum

LHCP2019

$\psi(\text{2S})$ in pp collisions at 7 and 13 TeV

- ψ (2S) $\rightarrow \mu^{+}\mu^{-}$ in pp collisions: 275 pb⁻¹ at 13 TeV (2015) and 614 pb⁻¹ at 7 TeV (2011)
- Comparison w models
 - Prompt result vs NRQCD
 - Non-prompt vs FONLL
 - Good agreement for high- $p_{_{T}}$

 Ratios more precise test of theories (most uncertainties cancel out)

NRQCD: H.-S. Shao et al, JHEP 05 (2015) 103 FONLL: M. Cacciari et al, EPJC75 (2015) 610

LHCP2019

Quarkonium production vs. charged-particle multiplicity

LHCP2019

Spectroscopy

Observations of excited B_c⁺ states

• ATLAS

- Observed a state consistent with both $B_c^+(2S)$ and $B_c^{*+}(2S)$ in 24 fb⁻¹ of pp collisions at $\sqrt{s} = 7$ and 8TeV
- CMS:
 - Run 2: in 143 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV
 - B_c^+ candidates from $J/\psi(\rightarrow \mu^+\mu^-)\pi^+$ combinations
 - B_c⁺(2S) and B_c^{*+}(2S) observed
 (combined significance of 6.5 standard deviations)

Run 1 and 2: in Data MeV/c^2) 45 Data = 143 fb⁻¹ Fit result LHCb Run 1+Run 2 8.5 fb⁻¹ of pp 60 s = 13 TeV 40Total fit Signa $B_c^*(J/\psi K^*) \pi^*\pi^*$ $B_{c}^{*}(2S)^{+}$ collisions at Events / 10 MeV 05 05 05 05 Comb. backo $B_c(2S)^+$ ŝ $\sqrt{s} = 7, 8, 13 \text{ TeV}$ Combinatorial Same-sign Candidates 20 \rightarrow B_c⁺(2S) and B_c^{*+}(2S) for the first time 10 separatly observed $\Delta M = M \left(B_c^+ \pi^+ \pi^- \right) - M \left(B_c^+ \right) M \left[\text{MeV}/c^2 \right]$ 700 6.8 6.9 7.0 7.1 6.7 $M(B_{a}^{+} \pi^{+}\pi^{-}) - M(B_{a}^{+}) + m_{B^{+}}$ (GeV)

• LHCb

LHCP2019

Pentaquarks in $\Lambda_b^{0} \rightarrow J/\psi p K^-$

- Latest LHCb results on pentaquark searches
- Run 1 + Run 2 data (integrated luminosity 9 fb⁻¹), better data selection, increase in production cross section (13 TeV instead of 7 and 8 TeV)
- 9 times larger data sample
 → improved resolution on mass spectra
- Masses of narrow peaks just below $\Sigma_{c}^{+}\overline{D}^{(*)_{0}}$ masses

LHCb Collaboration, arXiv: 1904.03947 Tightly-bound Loosely-bound pentaquark

 Although compact pentaquark model not ruled out, these features favour the molecular interpretation → measure quantum numbers and find isospin partners for definitive answer

Near-threshold DD spectroscopy

LHCb Collaboration, arXiv: 1903.12240

- Charmonium spectroscopy
- Run 1 + Run 2 data (integrated luminosity 9 fb⁻¹)
- Promptly produced DD candidates selected
- Fit performed in 3 overlapping mass regions to better parameterise the background

Summary

- Wealth of beautiful experimental results due to large data samples and improved analysis techniques
 - Heavy-flavour production, properties and spectroscopy
 - \rightarrow Precision measurements
 - \rightarrow First observations
- Experimental results provide important contraints for theoretical models
 - Theoretical calculations with smaller uncertainties needed
- Stay tuned for many more new results from Run 1 and Run 2

Back-Up

D⁺-meson production in pp collisions at 5 TeV

D-meson ratios w model comparisons: pp 7 TeV

ALICE Collaboration, Eur.Phys.J. C77 (2017) 550

Gluon PDF constraints due to ratios

M. Cacciari, arXiv:1507.06197.pdf

Pb-Pb UPC: LHC as a γ Pb collider (II)

ALICE Collaboration, arXiv: 1903.06272,

- Impulse approximation: no nuclear effects
- STARLIGHT: VDM + Glauber
 Klein, Nystrand et al., Comput. Phys. Commun. 212(2017)258
- EPS09 L0 (GKZ): EPS09 shadowing Guzey, Kryshen, Zhalov, PRC93(2016)055206
- LTA (GKZ): Leading Twist Approximation Guzey, Kryshen, Zhalov, PRC93 (2016) 055206
- GM: Colordipole model + IIM CGC Goncalves, Machado et al.: PRC90(2014)015203, JPG 42(2015)105001
- LM IPSat: Color dipole model + IPSat CGC T. Lappi, H. Mäntysaari, PRC83(2011)065202; 87(2013)032201
- CCK: hot-spot model + Glauber-Gribov Cepila, Contreras, Krelina, PRC97(2018)024901
- LS: Color dipole model + BGK-I CGC Luszczak, Schafer: arXiv:1901.07989