Searches for Dark Matter

Shih-Chieh Hsu
University of Washington
On behalf of the ATLAS & CMS Collaborations

LHCP, Puebla Mexico May 21 2019

Dark Matter & WIMPs

- Particle nature of dark matter (DM) strongly suggested by gravitational anomaly observations
- Weakly Interacting Massive Particles (WIMPs) attract DM candidates with properties consistent to thermal relics (a WIMP miracle!)

WIMPs Detection

- WIMPs may be produced through proton-proton collisions at the LHC!
- Collider searches are complementary to Direct Detections and Indirect Detections.

Dark Matter Models

Effective Field Theories

Simplified Models

Complete Models (e.g. Supersymmetry)

Simple

Complex

Dark Matter Models

Effective Field Theories

Complete Models

Simple

Complex

Simplified Models being the primary focus at the LHC DM community:

- Avoid EFT validity concerns
- Capture generic signatures arised in a variety of complete models

Dark Matter Detection at the LHC

1. **X**+**E**_T^{miss} **searches** (X= SM particles)

Standard Model (SM) **Arbitrary Units** Signal model Missing Transverse Energy [GeV]

Tail distribution

2. Mediator searches

Bump hunting

DM (χ) has NO interactions with detectors.

Broad Search Program

- Quite often the same big idea probed by different signatures
 - It's crucial to search all complementary signatures

Broad Search Program

- Quite often the same big idea probed by different signatures
 - It's crucial to search all complementary signatures

Key Experiment Observables

Missing transverse momentum (energy)

 Transverse momentum balanced with initial transverse momenta = 0!

$$\Delta \phi \left(p_T^{miss}, X \right) \sim \pi$$
 $p_T^{miss} \sim p_T^X (E_T^{miss})$

Run/Event: 258159 / 550030997

Lumi section: 434

- Understanding E_T^{miss} is crucial for dark matter searches at collider, and challenging due to high pileup events.
- Most of results in this talk exploit 2015+2016 data.

$X+E_T^{miss}$ Searches

W

Initial State Radiation (ISR) of SM particles

p_τ(V) dramatically reduced modelling uncertainties in collaboration with theorists 2%~10%. (arXiv:1705.04664)

Jet+E_Tmiss: Background Estimate

• Irreducible background: $Z(v\overline{v})$ +jets

- Z+jets could also be dominant background to other X+E_T miss
 - jets might be mis-reconstructed as b-jets, γ, W, Z, h, top.
 - Theory uncertainty of p_T(V) is a limiting factor for high-pT search in Run 3

W

Higgs+E_T miss

- ISR process strongly suppressed It's a direct probe of couplings between DM mediators and Higgs.
- New combinations of 5 Higgs channels carried out by CMS
 bb + τ τ + γ γ + WW + ZZ
- Sensitivity driven by bb

Heavy Flavor (t/b/tt/bb)+E_T miss

- Analysis regions categorized by number of leptons, b-jets and jets
- Simultaneous fit across all regions to extract signal yields.

Mediator Search

W

Dijet resonance search

- Complementary searches for dark matter
 - Dark matter may be too heavy to be produced directly, or weakly coupled to mediator

Higgs Invisible

- SM prediction is small BR(H \rightarrow ZZ \rightarrow 4v) ~ 0.1%
- A direct probe of coupling between DM and the Higgs with mass of DM lighter than 62 GeV.
- VBF production is the most sensitive channel

CMS BR(H \rightarrow inv) < 19% (15% exp.) @95% CL ATLAS BR(H \rightarrow inv) < 26% (17% exp.) @95% CL [arXiv: 1904.05105]

Joint Interpretations

DM Interpretations with Mediator Searches

- Complementary searches for X+E_T^{miss} and mediator searches
 - Dijet searches cover a broad mediator mass range
 - Results highly depend on choice of coupling parameters

W

Comparison to Direct Detections

- Complementary searches for Direct Detections and Collider Searches
 - The results are re-interpreted in terms of DM-nucleon scattering [arXiv:1603.04156].
 - Caveats: comparisons are model dependent.

2HDM+a

W

arXiv:1903.01400

- Rich phenomenology in Two Higgs Doublet Model with additional pseudo-scalar which couples to dark matter:
 - 3 new physical scalars (H, H+, H-), and 2 new pseudo-scalars (a, A)

W

Broad dark matter search program from ATLAS and CMS presented

Summary

- No significant discrepancies from SM predictions
- See more details from parallel talks by <u>William Kalderon (ATLAS)</u>, <u>Alison Hall (CMS)</u>
- Complementarity between mono-X searches, mediator searches, and direct detections
 - New summary papers are exploiting joint information with less models
 - Caveats: results highly depend on choice of coupling parameters
- Large sets of results still based on 2015/2016 (~36 fb⁻¹) data
 - Full Run 2 analyses (140 fb⁻¹) are actively on-going.
 - Precision searches!

Backup

References

	ATLAS	CMS
Mono-jet	JHEP 01 (2018) 126	PRD 97 (2018) 092005
mono-γ	EPJC (2017) 77:393	JHEP 02 (2019) 074
mono-Z(II)	EPJC 78 (2018) 291	EPJC 78 (2018) 291
mono-V(had)	JHEP 10 (2018) 180	PRD 97 (2018) 092005
mono-h(bb)	ATLAS-CONF-2018-039	EPJC 79 (2019) 280
mono-h(γγ)	PRD 96 (2017) 112004	JHEP 09 (2018) 046
mono-h($\tau\tau$)	_	JHEP 09 (2018) 046
mono-h(WW,ZZ)	_	CMS PAS EXO-18-011 (new)
Mono-top	1812.09743	JHEP 03 (2019) 141
tt+MET	EPJC 78 (2018) 18	JHEP 03 (2019) 141
mono-Bottom	EPJC 78 (2018) 18	-
b+MET	EPJC 78 (2018) 18	-
Higgs Invisibl	arXiv:1904.05105	arXiv:1809.05937

DM Interpretation with mediator searches

- Complementary searches by mono-X and mediator searches
 - Dijet searches cover a broad mediator mass range
 - Results highly depend on choice of coupling parameters

ATLAS Higgs Invisible

BR(H inv) $< 26\% \rightarrow (17\%)$ expected)

Constraints weaker than Run 1 due to excesses in every Run 2 channel.

CMS Higgs Invisible Interpretations

The results are re-interpreted in terms of DM- nucleon scattering [arXiv:1603.04156].

Good complementarity between • LHC and direct detection experiments

Spin Independent

Spin Dependent

2HDM+a Phenomenology

Figure 6: Schematic representation of the dominant production and decay modes for the 2HDM+a model.