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Evolution of a heavy ion collision

Time[fm/c]

➢ Kinetic freeze-out (T
kin 

~ 100 MeV)
 elastic reactions cease: spectra and correlations are 

frozen (free streaming of hadrons)

➢ Formation of Quark-Gluon Plasma phase (if T > T
c
)

➢ Chemical freeze-out ( T
chem

~156 MeV):
 inelastic reactions cease: the chemical 

composition of the system is fixed (particle yields 
and fluctuations)

t = 0

t ~~ 1

 ~t ~~ 10

➢ Phase transition from QGP to hadron gas       
(T

C
 ≈ 160 MeV)  

➢ Two Lorentz contracted nuclei approach and collide
d,t,3He

Tchem

Tkin

1

➢ “Pre-equilibrium” 
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Thermal model fit to LHC data

K* not included in the fit
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ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018)
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● Hadron abundances in HI (yields and 
ratios) can be successfully interpreted 
in terms of production at chemical 
equilibrium

● Statistical (thermal) models predict the 
yields of any particle at chemical 
freeze-out once that T

ch
 and μ

B 
are 

known

● At the LHC (μ
B 
= 0) particle yields of 

light flavor hadrons (including nuclei) 
are described within the thermal model 
with a common chemical freeze-out 
temperature (T

chem
= 156 ± 2 MeV)
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Thermal model fit to ALICE data
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K* not included in the fit
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● Hadron abundances in HI (yields and 
ratios) can be successfully interpreted 
in terms of production at chemical 
equilibrium

● Statistical (thermal) models predict the 
yields of any particle at chemical 
freeze-out once that T

ch
 and μ

B 
are 

known

● At the LHC (μ
B 
= 0) particle yields of 

light flavor hadrons (including nuclei) 
are described within the thermal model 
with a common chemical freeze-out 
temperature (T

chem
= 156 ± 2 MeV)

● K*(892) production not described 
(yield suppressed)
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Hadronic phase

Chemical freeze-out

Kinetic freeze-out

Ti
m

e

● The yield of resonances produced in heavy ion collisions is 
expected to be in agreement with T

ch
 chemical freeze-out 

equilibrium 
● Although, can be altered by hadronic interactions between 

chemical and kinetic freezeouts:
➢ rescattering: daughter particles undergo elastic scattering 

or pseudo-elastic scattering through a different resonance 
→  parent particle is not reconstructed → loss of signal 

➢ regeneration: pseudo-elastic scattering of decay products 
(πK → K*0, KK→  ϕ, etc.) → increased yields

 
●  Effect of hadronic processes depends on: 

➢ lifetime and density of hadronic phase 
➢ resonance lifetime and scattering cross sections

Λ*
K*

K K

K*

π

K

ϕ

K

π π

K*

K

π
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Light flavoured hadronic resonances

ρ(770)0 K*(892)0 Λ(1520) ϕ(1020)

cτ(fm/c) 1.3 4.2 12.6 46.2

ds uds ssu u+dd

√2

● Resonances have lifetimes comparable to that of the fireball produced in heavy-ion collisions: 
 can be used to study properties and lifetime of the late hadronic phase  

● Resonances differ by mass and quark content: 
 insights on the multiplicity-dependent enhancement of strangeness production 
 anomalous baryon-to-meson ratios at intermediate transverse momentum parton energy loss 

5
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Suppression of hadronic resonances

● ρ(770)0/π±

 The ratio of p
T
 integrated yields divided by 

particle with similar quark content ρ/π shows 
clear suppression going from pp and peripheral 
Pb-Pb collisions to central Pb-Pb 

ρ(770)0 K*(892)0 Λ(1520) ϕ(1020)

cτ(fm/c) 1.3 4.2 12.6 46.2

ALICE Collaboration, arXiv:1805.04365
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Suppression of hadronic resonances

ρ(770)0 K*(892)0 Λ(1520) ϕ(1020)

cτ(fm/c) 1.3 4.2 12.6 46.2

● K∗(892)0/K± 

 K*(892)/K ratio decreases as function of multiplicity 

 Suggests that re-scattering is dominant over 
regeneration

6

ALICE Collaboration, 
Phys. Rev. C 91 (2015) 024609
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Suppression of hadronic resonances

ρ(770)0 K*(892)0 Λ(1520) ϕ(1020)

cτ(fm/c) 1.3 4.2 12.6 46.2

ALICE Collaboration, Phys.Rev. C99 (2019) 024905 

● Λ(1520)/Λ

 Λ(1520)/Λ ratio clearly decreases as function of 
multiplicity in Pb-Pb 

 Clear suppression compared to the thermal model 
predictions

STAR Collaboration, Phys.Rev.C78 (2008)  044906 
STAR Collaboration, Phys. Rev. Lett. 97 (2006) 132301

6
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Suppression of hadronic resonances

ρ(770)0 K*(892)0 Λ(1520) ϕ(1020)

cτ(fm/c) 1.3 4.2 12.6 46.2

● φ(1020)/K± 

 φ(1020)/K ratio independent of collision system 
(energy)

 The ratio φ(1020)/K increases at large ⟨dN
ch
/dη⟩ 

because of strangeness enhancement

ALICE Collaboration, Phys. Rev. C 91 (2015) 024609

6
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Suppression of hadronic resonances

• Hadronic Resonances:

 Suppression of ρ0, K 0∗ , Λ(1520), while 
φ not suppressed

 Qualitative description is obtained 
with EPOS+UrQMD 

➢ Hadronic phase (UrQMD) important 
in EPOS to describe data

 Consistent results for Xe-Xe and Pb-Pb 
at similar multiplicity

➔ Indication of the existence of a 
hadronic phase

7
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Deuteron p
T 
spectra in Pb-Pb collisions

Spectra are extracted in several centrality bins and fitted 
with blast-wave function for the extraction of yields

ALICE-PUBLIC-2017-006

8

E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993)
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4He production in Pb-Pb collisions

● Heaviest anti-nucleus observed : 16 candidates 
in Pb-Pb at 5.02 TeV

● Pre-selection using dE/dx measured in TPC
● Selection: ±3σ from the expected value for 4He
● Signal extraction from mass squared 

distribution obtained using TOF

9
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Nuclei production in Pb – Pb collisions 

dN
dy

∝exp(−
m
T chem

)p

d

3He

4He

● Thermal model prediction: exponential dependence of 
the yield

● The density ratio of a particle with the next heavier 
one:

 
n i
ni+1

≈exp(− Δm
T chem )

(m
p
 – m

d
) ~ 938 MeV

p/d ~ exp(938/160) ~ 350

dN/dy = Ke-BA

B = −5.8±0.2 

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018)

p/d ~ exp(-B) ~ 

Thermal model expectation

Experimental result

330 +70
−61

10
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Hypernuclei
● A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or 

more strange quarks) in addition to nucleons

• Main goals of hypernuclear physics:

• Extension of nuclear chart

• Understand the baryon-baryon interaction in strangeness sector

• Study the structure of multi-strange systems

11
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Hypernuclei
● A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or 

more strange quarks) in addition to nucleons

• Main goals of hypernuclear physics:

• Extension of nuclear chart

• Understand the baryon-baryon interaction in strangeness sector

• Study the structure of multi-strange systems



p n 3
Λ
H is the lightest known hypernucleus and is formed by (p,n,Λ).

● Mass = 2.991 GeV/c2

● B
Λ
 = 0.13 ± 0.05 MeV (B

d
 = 2.2 MeV, B

t
 = 8.5 MeV,  B

3He
 = 7.7 MeV) 

(3
Λ
H) 3

Λ
H  is unstable under weak decay and branching ratios are not well known → Only few 

theoretical calculations available [1]

11

[1]Kamada et al., Phys. Rev. C57(1998)4
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Thermal model comparison

●   H/3He ratio compared with different 
thermal models:
● Extracted yield is in good agreement 

with equilibrium thermal model 
prediction for T

chem
 = 156 MeV, such 

as GSI-Heidelberg model [1] even if  
B

Λ
 is << T

ch

[1]A. Andronic et al., Phys. Lett. B 697, 203 (2011)

Λ

3

ALICE Collaboration Phys. Lett. B 754 (2016) 360-372

12
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Thermal model fit 

● Opposite to resonances, yields of 
(hyper)nuclei are described by the 
common chemical freeze-out 
temperature  (T

chem
= 156 ± 2 MeV)

● The binding energy of 
(hyper)nuclei is very small and it is 
surprising that they do not 
immediately dissociate in the 
hadronic phase
 T

ch
 (160 MeV) < T

hadronic
 < T

kin
 (100 MeV)

K* not included in the fit
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Coalescence model
● Model originally developed to describe light-nuclei production (deuteron, triton…)

● If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus 
can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space

● Assuming that p an n have the same mass and have the same p
T
 spectra, the yield of any 

nucleus can be determined as

14
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Coalescence model
● Model originally developed to describe light-nuclei production (deuteron, triton…)

● If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus 
can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space

● Assuming that p an n have the same mass and have the same p
T
 spectra, the yield of any 

nucleus can be determined as

Measured nucleus p
T
-spectra Measured proton p

T
 -spectra

14
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Coalescence model
● Model originally developed to describe light-nuclei production (deuteron, triton…)

● If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus 
can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space

● Assuming that p an n have the same mass and have the same p
T
 spectra, the yield of any 

nucleus can be determined as

pp p-Pb Pb-Pbpp p-Pb

ALICE Collaboration,arXiv:1902.09290 [nucl-ex]

14
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Coalescence model
● Model originally developed to describe light-nuclei production (deuteron, triton…)

● If baryons at freeze-out are close enough in phase space and match spin state a (anti-)nucleus 
can be formed

● Usually, since the nucleus is larger w.r.t. the source, the phase space is reduced to the 
momentum space

● Assuming that p an n have the same mass and have the same p
T
 spectra, the yield of any 

nucleus can be determined as

pp p-Pb Pb-Pbpp p-Pb

p
T
/A = 0.75 GeV/c

14
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Coalescence parameter B
2

Simple coalescence model 
● Flat B

2 
vs p

T   
and no dependence on 

multiplicity/centrality
✔ Approximately observed in “small systems”: 

pp, p -Pb and peripheral Pb-Pb

pp

p-Pb

Pb-Pb

15
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Coalescence parameter B
2

Simple coalescence model 
● Flat B

2 
vs p

T   
and no dependence on 

multiplicity/centrality
✔ Approximately observed in “small systems”: 

pp, p -Pb and peripheral Pb-Pb

More elaborate coalescence model takes into account 
the volume of the source:

● B
2
 scales like HBT radii (R)

➢ decrease with centrality in Pb-Pb is explained as 
an increase in the source volume

➢ increase with p
T
 in central Pb-Pb reflects the k

T
-

dependence of the homogeneity volume (i.e. 
volume with similar flow properties) in HBT
✔ Qualitative agreement in central Pb-Pb collisions

pp

p-Pb

Pb-Pb

F.Bellini and A. P.Kalweit, arXiv:1807.05894 [hep-ph].
R. Scheibl, U. Heinz,  PRC 59 (1999) 1585-1602   
K. Blum et al., PRD 96 (2017) 103021

15
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Light nuclei production: Deuteron to proton ratio

● d/p increases with multiplicity going from pp to peripheral Pb-Pb : consistent with simple coalescence (d  p∝ p 2)
● No significant centrality dependence in Pb-Pb : consistent with thermal model (yield fixed by T

chem
)

● How the two models are connected is not yet fully understood
● Is there a single particle production mechanism?

16



Charm BaryonCharm Baryon



22/05/2019 LHCP 2019 - Ramona Lea / 21

Heavy quarks in heavy ion collisions

● Charm and beauty quarks are produced in parton hard scatterings in the initial phase of the 
heavy-ion collision  (production time of cc(bb) pair at rest

● Flavour is conserved in strong interactions → Transported through the full system evolution

● What can be tested?
● In-medium energy loss: colour-charge and 

quark-mass dependence 
● Heavy quark participation in the collective 

expansion, thermalisation in the medium
● Modification of the hadronization 

mechanisms in the medium

17
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Λ
c
 production in heavy ion collisions

● ALICE measured Λ
c
 in Pb-Pb collisions at 5.02 TeV for 0-80% centrality class 

● 2.5σ hint of Λ
c
 / D0 ratio enhanced in Pb-Pb collisions w.r.t. pp and p-Pb collisions

● Coalescence production mechanism at play

18

ALICE Collaboration arXiv:1809.10922 
DOI: 10.1016/j.physletb.2019.04.046 
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Λ
c
 production in heavy ion collisions

● ALICE measured Λ
c
 in Pb-Pb collisions at 5.02 TeV for 0-80% centrality class 

● ~2.5σ hint of Λ
c
 / D0 ratio enhanced in Pb-Pb collisions w.r.t. pp and p-Pb collisions

● ~2.0σ hint of larger R
AA

 of Λ
c 
than D mesons in 0-10% centrality class 

● Charm quark hadronization via coalescence: 
● hierarchy of the R

AA
   Λ

c 
> D

s 
> Non-strange D-meson > pions ALICE Collaboration arXiv:1809.10922 

DOI: 10.1016/j.physletb.2019.04.046 

18
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Λ
c
 production in heavy ion collisions

19

● CMS measured Λ
c
+ production in 2 centrality intervals (0-30%) and (30-50%) in the  p

T
 interval 

10-20 GeV/c:
● The R

AA
 for Λ

c
+ show a hint of suppressed production of Λ

c
+  for p

T
 > 10 GeV/c (0-100%), but 

no conclusion can be drawn due to the large uncertainty in the pp differential cross section.

CMS Collaboration CMS PAS HIN-18-009
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Λ
c
 production in heavy ion collisions

20

● The Λ
c
 / D0 ratio in Pb-Pb collisions, is consistent with the result from pp collisions: 

● Result in contrast w.r.t ALICE observation of a large enhancement in the Λ
c
 / D0  ratio in 

the p
T
 range of 6-12 GeV/c 

➢ may suggest that there is no significant contribution from the coalescence process for 
p

T
 > 10 GeV/c in Pb-Pb collisions

CMS Collaboration CMS PAS HIN-18-009
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Conclusions

● Thermal models are able to describe the production yields of light flavor hadrons and 
(hyper)nuclei within a common chemical freeze-out temperature

● Resonance results support the existence of a hadronic phase in central heavy-ion 
collisions that lasts long enough to cause a significant reduction of the reconstructed 
yields of short lived resonances: surprisingly nuclei seem to survive thru this phase

● Light nuclei measurement reveals system size dependence of hadronization:

 Evolution of BA and d/p ratio vs multiplicity: is there a single particle production 
mechanism?

● Charmed-baryon Λc is less suppressed than D mesons: favored production mechanism 
is quark coalescence for pT < 10 GeV/c, for higher momenta this has not been observed

● Beautiful picture, but there is still a lot to do and to understand!

➢New and more precise data can be expected from the LHC on the presented topics in 
the next years 

21
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Production of light (anti-)(hyper)nuclei
After the Long Shutdown 2 data will be collected with better performance at higher luminosity 

● Expected integrated luminosity: ~10 nb-1 ( ~ 8x109 collisions in the 0-10% centrality class)
● Precision test of coalescence / thermal production models

● Sensitive to size ratio of the object and the source
● Search for rarely produced anti- and hypermatter: Insights on the strength of the hyperon-nucleon 

interaction, relevant for nuclear physics and neutron stars. 
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Hadronization of Heavy Quark 

● Charm quark number is conserved in strong interaction
● Hadronization chemistry: crucial for the interpretation of the heavy flavor hadron spectra 
● Run 3+4 data will allow the first comprehensive survey of this effect
● D

s
 , B

s
 and Λ

c
 spectra from low to high p

T
 in Pb-Pb collisions

● Provide the necessary statistical accuracy to see the emergence of the effect at low p
T



22/05/2019 LHCP 2019 - Ramona Lea / 21

Identification of nuclei 
Low momenta: specific energy loss in the TPC
● Nuclei identification via dE/dx measurement in the TPC:

● Excellent separation of (anti-)nuclei from other 
particles over a wide range of momenta

––   Bethe-Bloch curves

(rigidity)
ALICE Collaboration, Phys. Rev. C 93, 024917 (2016) 

Higher momenta: time-of-flight measurement in 
the TOF
● Velocity measurement with the Time Of Flight detector is 

used to evaluate the m2 distribution
● Excellent TOF performance: σ

TOF
 ≈ 85 ps in Pb-Pb collisions

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044
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“More elaborate” coalescence model

● For “large” systems, the size of the emitting volume (V
eff

) 
has to be taken into account:

● the larger the distance between the protons and 
neutrons which are created in the collision, the less likely 
it is that they coalesce

● The source can be parameterized as rapidly expanding 
under radial flow (hydro)

● The coalescence process is governed by the same 
correlation volume (“length of homogeneity”) which can be 
extracted from HBT interferometry

● The source radius enters in the B
A
 and in the quantum-

mechanical correction ⟨CA⟩ factor that accounts for the size 
of the object being produced (d, 3He, …)

R. Scheibl, U. Heinz,  PRC 59 (1999) 1585-1602   
K. Blum et al., PRD 96 (2017) 103021

F.Bellini and A. P.Kalweit, arXiv:1807.05894 [hep-ph].

Good description of the data
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Centrality of the collisions  

Centrality = degree of overlap of the 2 colliding nuclei

Central  collisions:
● small impact parameter b
● high number of participant nucleons →  high 

multiplicity

Peripheral collisions:
● large impact parameter b
● low number of participant nucleons →  low multiplicity

Centrality connected to observables via 
Glauber model

ALICE Collaboration, Phys. Rev. Lett. 106, 032301 (2011)
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Centrality of the collisions: p-Pb and pp
Multiplicity estimator: slices in VZERO-A (V0A) amplitude

Correlation between impact
parameter and multiplicity is

not as straight-forward as in Pb-Pb

p Pb

Central collision

p
Pb

Peripheral collision
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Statistical thermal model
● Thermodynamic approach to particle production in heavy-ion collision: all the particles are 

produced at chemical freeze-out 
● Starting point: Grand Canonical partition function (Z) for a relativistic ideal quantum gas of hadrons 

of particle type i (i = pion, proton,... → full PDG)
● Thermal model can predict also the yields of any particle at chemical freeze-out

● Exponential dependence of the particle yield: 

● The thermal model predicts an exponential decrease of particle yields with increasing mass at a 
given temperature

● The density ratio of a particle with the next heavier one:

dN
dy

∝e
(−

m
T chem)

n i
ni+1

≈exp(− Δm
T )
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Thermal model

Nature 561 (2018) no.7723, 321-330 arXiv:1710.09425 [nucl-th]  

Statistical hadronization model: thermal emission 
from equilibrated source

Particle abundances fixed at chemical freeze-out

● Primordial yields modified by hadron decays:
● Contribution obtained from calculations based 

on known hadron spectrum 
● Excellent agreement with data with only 2 free 

parameters: T
chem

 , V
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Coalescence parameter B
3

ALICE Collaboration, arXiv:1709.08522

B
3
 of (t)t and (3He)3He measured in pp and Pb-Pb collisions 

First ever measurements of the B
3 
of t and 3He in pp collisions

Increasing trend with p
T
 and centrality observed in Pb-Pb collision

pp Pb-Pb

ALICE-PUBLIC-2017-006
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Hypertriton (
Λ
H)



p n 3
Λ
H is the lightest known hypernucleus and is formed by (p,n,Λ).

● Mass = 2.991 GeV/c2

● B
Λ
 = 0.13 ± 0.05 MeV (B

d
 = 2.2 MeV, B

t
 = 8.5 MeV,  B

3He
 = 7.7 MeV) 

3

H → 3He + - (~25%)

3

H → 3He + 0 (~13%)

3

H → d + p + - (~41%)

3

H → d + n + 0 (~21%)

(3
Λ
H) 3

Λ
H  is unstable under weak decay. Possible decay modes:

● Branching ratios are not well known
● Only few theoretical calculations[1] available

[1]Kamada et al., Phys. Rev. C57(1998)4



3

3

H → 3He + + (~25%)

3

H → 3He + 0 (~13%)

3

H → d + p + + (~41%)

3

H → d + n + 0 (~21%)
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