

Precision Electroweak Measurements in ATLAS and CMS

Daniele Zanzi on behalf of ATLAS and CMS collaborations

LHCP 2019, Puebla, Mexico

 $\sin^2 \theta_W = 1 - M_W^2 / M_Z^2$

M_w [GeV] 80.5 68% and 95% CL contours **Gfitter** direct M_w and $\sin^2(\theta_{eff}^f)$ measurements fit w/o M_w , sin²(θ_{eff}^f) and Z widths measurements fit w/o $M_w^{(i)}$, sin²($\theta_{eff}^{(i)}$) and M_measurements 80.45 fit w/o M_w , sin²(θ_{eff}^{f}), M_u and Z widths measurements 80.4 M_w = 80.379 ± 0.013 GeV 80.35 $\begin{array}{l} sin^2(\theta^f_{eff}) = 0.23153 \\ \pm \ 0.00016 \end{array}$ G fitter SM 80.3 0.231 0.2315 0.232 $sin^{2}(\theta_{eff}^{I})$

- W mass measurement
- $sin^2\theta_W$ measurement
- Recent W,Z cross section measurements:
 - Z d σ /dm at 13TeV
 - Z d σ /p_T, d σ /d ϕ *, d σ /dy at 13TeV
 - W production and charge asymmetry at 8TeV
 - W,Z at 5.02 TeV
- Related talks:
 - Electroweak precision measurements with ATLAS (Elena Yatsenko) and CMS (Dylan George Hsu)

Introduction

G fitter

0.2318

 $sin^{2}(\theta_{eff}^{I})$

- $sin^2\theta_W$ and m_W are key parameters of the SM
 - can be calculated from m_Z, α_{EM} , $G\mu$ (with corrections from m_{top} and m_H)
- To test SM, our goal is to reach the precision of global EW fit with direct measurements:
 - m_w at ±10MeV
 - sin²θ_W at ≈±10⁻⁴
- LHC individual experiments approaching sensitivity of LEP/SLD and Tevatron combined
 - But PDF uncertainties are becoming the bottleneck

	EW Fit	World Avg
sin2∂W	0.23153 ± 0.0000 6	0.23152 ± 0.000 16
mW [GeV]	80.354 ± 0.00 7	80.379 ± 0.0 13
D. Zanzi		gFitter

W Mass

W Mass

EPJC78(2018)110

- Measured with 4.6 fb⁻¹ at 7 TeV by ATLAS
 - both $W \rightarrow e_{\nu}$ and $W \rightarrow \mu_{\nu}$ channels analysed
- Template fit to p_T^I and m_T
 - p_T sensitive to p_T modelling
 - m_T sensitive to hadronic recoil u_T
- Templates built with Powheg+Pythia8 and reweighted to best theoretical modelling
 - $d\sigma/d\eta$ and W polarisation with DYNNLO
 - $d\sigma/dpT$ with Pythia8 and AZ tune

m_W Uncertainties

ATL-PHYS-PUB-2017-021

CERN

Combined	Value	Stat.	Muon	Elec.	Recoil	Bckg.	QCD	EW	PDF	Total	χ^2/dof
categories	[MeV]	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	of Comb.
m_{T} - $p_{\mathrm{T}}^{\ell}, W^{\pm}, e$ - μ	80369.5	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	29/27

- PDF uncertainties
 - lepton distributions affected by W polarisation (sensitive to PDF)
 - pTW spectrum dependent on the flavour of the incoming quarks
 - needs for future results:
 - improved precision with more W,Z measurements (and N3LL+NNLO predictions? <u>ATL-PHYS-PUB-2018-004</u>)
 - estimate of correlations among PDF sets for combinations with other m_W and $sin^2\theta_W$ measurements
- QCD systematics mainly due to uncertainties on pTW
 - at 7TeV with <μ>~9, pT^W precision limited by σ(uT)~13GeV resolution on hadronic recoil
 - p_T^W modelled from Z p_T data via Pythia8 AZ tune → 2.5% uncertainty at low p_T from extrapolation syst
 - same 2.5% precision also in W/Z ratio in 8TeV data (CMS)

ERN

p_T^W Prospects

- Plan to directly measure p_T^W in data in W events at low μ and with good u_T resolution
 - target 1% precision in 5GeV-bins of p_T^W at low p_T → x0.5 QCD modelling syst for W mass
 - requires $\sigma(u_T) \approx 5$ GeV to control bin-by-bin migration syst
 - expected to be achieved with low µ data, lower calorimeter thresholds and new improved particle-flow algorithm for hadronic recoil (EPJC77(2017)466)
- Low- μ datasets, $<\mu>\sim2$:
 - ATLAS/CMS: 380/200pb⁻¹ at 13TeV, 260/300pb⁻¹ at 5TeV (preliminary luminosity calibrations)
 - for equal luminosity, 5TeV and 13TeV data expected to have same sensitivity (better u_T resolution at 5TeV, ie lower UE, and higher cross section at 13TeV)

$sin^2\theta_W$

- Measured via asymmetry in lepton angular distributions in Z decays induced by the Z coupling structure
- Most-precise measurement from LEP+SLD combination (16x10⁻⁵), but with a difference between the two most sensitive individual results at 3.2σ
- At LHC, two related methodologies:
 - A₄ angular coefficients in full decay lepton phase space (<u>ATLAS-CONF-2018-037</u>)
 - triple differential (cosθ_{CS}, m_{II}, y_{II}) cross section and A_{FB} in fiducial phase space (JHEP12(2017)059, EPJC78(2018)701)

 $sin^2\theta^{f}_{eff}=sin^2\theta_W K^{f}(s,t)$, with K^f fermionflavour dependent form factors that absorbs EW corrections

D. Zanzi

ERN

pp→Z→II cross section in full lepton phase space determined by 5 variables that separate Z production from decay kinematics

- 9 harmonic polynomials $P_i(\cos\theta_{CS}, \phi_{CS})$ describe the lepton angular distributions in Z rest frame
- 8 A_i(m^{II},p_T^{II},y^{II}) coefficients and total unpolarised cross section σ^{U+L}(m^{II},p_T^{II},y^{II}) describe the Z kinematics
- Parity-violating A₄ term sensitive to $sin^2\theta^{f}_{eff}$
 - A₄ proportional to $sin^2 \theta^{f}_{eff}$ based on effective linear relation (including EW corrections)
 - 10⁻⁴ in $A_4 \rightarrow 2^* 10^{-5}$ in $sin^2 \theta^{f}_{eff}$
 - in decay lepton full phase space $A_{FB} = 3/8 A_4$

+ $A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$ } EW LO and all orders in QCD

 $\left\{ (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin 2\theta\,\cos\phi \right.$

 $+\frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta$

Ai Methodology

 $\overline{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\,\mathrm{d}y^{\ell\ell}\,\mathrm{d}m^{\ell\ell}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \overline{16\pi}\,\overline{\mathrm{d}p_{\mathrm{T}}^{\ell\ell}\,\mathrm{d}y^{\ell\ell}\,\mathrm{d}m^{\ell\ell}}$

 $d\sigma^{U+L}$

anzi

Ai Methodology

 $d\sigma$

 $\overline{\mathrm{d} p_{\mathrm{T}}^{\ell\ell}}$

- Fold P_i(cos θ_{CS} , ϕ_{CS}) to detector level
- Fit reconstructed cos\(\theta_{CS}, \phi_{CS}, m_{II}, y_{II}\) distributions in born-level m^{II}, y^{II} bins
- Extract A₄ in full decay lepton phase space and use predictions of A₄ to infer sin²θ^f_{eff}
- A₄ measurement dominated by statistical uncertainties
- QCD and PDF uncertainties dominate sin² θ^f_{eff} interpretation of A₄

$$\frac{1}{dy^{\ell\ell} dm^{\ell\ell} d\cos\theta d\phi} = \frac{1}{16\pi} \frac{1}{dp_{T}^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell}} \\ \left\{ (1 + \cos^{2}\theta) + \frac{1}{2} A_{0}(1 - 3\cos^{2}\theta) + A_{1} \sin 2\theta \cos\phi + \frac{1}{2} A_{2} \sin^{2}\theta \cos 2\phi + A_{3} \sin\theta \cos\phi + A_{4} \cos\theta + \frac{1}{2} A_{2} \sin^{2}\theta \sin 2\phi + A_{6} \sin 2\theta \sin\phi + A_{7} \sin\theta \sin\phi \right\}$$

 $d\sigma^{U+L}$

3

AFB Methodology

- Measure of A_{FB} asymmetry in Collin-Soper frame in reconstructed m_{II},y_{II} bins
 - angular event-weighted A_{FB} to improve statistical uncertainty and reduce impact of efficiency and acceptance uncertainties
- sin² θ^f_{eff} extracted from template fit to A_{FB} in data using predictions (Powheg v2+NNPDF3.0)

AFB,A4 at LHC

- A_{FB},A₄ strongly depend on PDF
 - quark assigned based on Z rapidity
 - largest at high y^z where valence quark PDFs dominate at large x
 - also depend on quark flavour, so on relative contributions of u and d PDFs
- $\mu\mu$ CC and eeCC channels with central leptons $|\mu| < 2.4$ ($|\mu_e| < 2.5$ in CMS)
 - high statistics, good to constrain PDFs
 - similar sensitivity in ATLAS and CMS
- eeCF channel with a forward electron $2.5 < |\mu| < 4.9$
 - low statistics, high sensitivity to $\sin^2 heta^{
 m f}_{
 m eff}$
 - experimentally challenging, unique to ATLAS

D. Zanzi

								_	
	[10-5]	ATLA	S				CMS		
	Channel	eecc	μμ _{CC}	ee _{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$	eeCC	μμCC	Comb
	Central value	0.23148	0.23123	0.23166	0.23119	0.23140			
					Uncertainties				
	Total	68	59	43	49	36			53
	Stat.	48	40	29	31	21	60	44	36
	Syst.	48	44	32	38	29			
				Uncerta	inties in measuremer	nts			
	PDF (meas.)	8	9	7	6	4			
	$p_{\rm T}^Z$ modelling	0	0	7	0	5			
	Lepton scale	4	4	4	4	3	10	8	
	Lepton resolution	6	1	2	2	1	10	0	
	Lepton efficiency	11	3	3	2	4	4	5	
Electro	on charge misidentification	2	0	1	1	< 1			
	Muon sagitta bias	0	5	0	1	2			
	Background	1	2	1	1	2			
	MC. stat.	25	22	18	16	12	33	15	
	Uncertainties in predictions								
	PDF (predictions)	37	35	22	33	24			31
	QCD scales	6	8	9	5	6	14	16	
	EW corrections	3	3	3	3	3			
					ATLAS-	CONF-2018-037	<u>EPJC</u>	78(2018	<u>8)701</u>

ATLAS-CONF-2018-037

$sin^2\theta^{f}$ eff and PDFs

PDF uncertainties constrained in $A_{FB}, A_4 \rightarrow sin^2 \theta^{f}_{eff}$ interpretation exploiting correlations in m^{II} and y^{II}

- PDF uncertainties profiled in ATLAS
- Bayesian χ^2 reweighting in CMS
- Yet PDF is source of large systematic uncertainty
 - CMS: PDF syst ±31, spread among PDF sets ~65 [10-5]
 - ATLAS: PDF syst ±24, spread among PDF sets ~28 [10-5]
 - compatibility cannot be estimated without correlations
- Improved understanding of PDF differences and correlations is key
 - new PDF sets with more LHC W,Z data will reduce impact of in-situ PDF constraints and ease combinations

	CT10	CT14	MMHT14	NNPDF31				
$\sin^2 \theta_{\text{eff}}^{\ell}$	0.23118	0.23141	0.23140	0.23146				
	U	Uncertainties in measurements						
Total	39	37	36	38				
Stat.	21	21	21	21				
Syst.	32	31	29	31				

ATLAS-CONF-2018-037

sin² θ^{f}_{eff} Prospects

- LHC Run1 measurements dominated by statistical and PDF uncertainties
- Future measurements at 13/14TeV:
 - higher statistics can more strongly constrain PDFs
 - higher dilution balanced by higher statistics
- Work ongoing in LHC EW precision group (<u>April meeting in Durham</u>) and PDF4LHC forum to investigate
 - EW/QED corrections, EW schemes, benchmark NNLO and resummed calculations and uncertainties
 - PDF differences and correlations

Recent W,Z Cross Section Measurements

More details in talks by <u>Elena Yatsenko</u> (ATLAS) and <u>Dylan George Hsu</u> (CMS)

W,Z Overview

ATLA	S/CMS	2.76 TeV	5 TeV	7 TeV	8 TeV	13 TeV
W	inclusi	STDM-2018-06 (*)				PLB759(2016)6
	d <i></i> ∕dpt			PRD85(2012)012005	JHEP02(2017)096	
	dσ/dη		EPJC79(2019) 128	EPJC77(2017)367	arXiv:1904.05631 (sub. to EPJC) EPJC76(2016)469	
	asym		EPJC79(2019) 128	EPJC77(2017)367 PRL109(2012)111806 PRD90(2014)032004	arXiv:1904.05631 (sub. to EPJC) EPJC76(2016)469	
	mass			EPJC78(2018)110		
Z	inclusi	STDM-2018-06 (*)				PLB759(2016)6
	dơ/dm			PLB725(2013)223 (high- mass), JHEP06(2014)112 (low-mass), EPJC77(2017)367,	<u>JHEP12(2017)059,</u> <u>JHEP08(2016)009</u> (high mass) <u>EPJC75(2015)147</u>	arXiv: <u>1812.10529</u> (sub. to JHEP)
	d <i>₀</i> /dpt			JHEP09(2014)145 PRD85(2012)032002	EPJC76(2016)291 JHEP02(2017)096 PLB749(2015)187	<u>CMS-PAS-</u> <u>SMP-17-010</u>
	d σ /d η		EPJC79(2019) <u>128</u>	EPJC77(2017)367 PRD85(2012)032002 JHEP12(2013)030	JHEP12(2017)059 EPJC75(2015)147 PLB749(2015)187	<u>CMS-PAS-</u> <u>SMP-17-010</u>
	d σ /d ϕ^*				EPJC76(2016)291 JHEP03(2018)172	<u>CMS-PAS-</u> <u>SMP-17-010</u>
	Ai/AFB				JHEP08(2016)159 EPJC78(2018)701 PLB750(2015)154	
	sin2∂W				ATLAS-CONF-2018-037 EPJC78(2018)701	

(*) in Elena Yatsenko's talk

D. Zanzi

- $d\sigma/dm$ of Z cross section with 2.3-2.8 fb⁻¹ at 13 TeV (2015)
 - fiducial selection (leptons after FSR) for $Z \rightarrow \mu \mu$ (ee): p_TI>22(30),10GeV, $|\eta_1|<2.4(2.5)$
 - cross sections in full lepton phase space corrected for FSR effects (dressed leptons)
- Full phase space cross sections in good agreement with FEWZ(NNLO QCD + NLO EW) with NNPDF3.0
 - predictions with photon-induced contributions also tested at high m_{II} with FEWZ+LUXqed

MINLO

POWHEG

aMC@NLO POWHEG FEWZ

CMS-PAS-SMP-17-010

20

- p_T^{II}, φ*, y^{II} differential Z cross section in ee, μμ events at 13 TeV with 35.9 fb⁻¹ (also 2D p_T^{II}-y^{II} differential cross section)
 - fiducial selection: fiducial selection (leptons after FSR): p_T > 25 GeV, $|\eta_1| < 2.4$, $|m_1-91.2| < 15$ GeV
- Normalised cross section uncertainties smaller than 0.5% for p_T <50 GeV
- Measurements compared fixed-order, resummed and parton shower predictions
 - FO: Z at NNLO QCD (FEWZ) and Z+j at NNLO QCD (ZjNNLO). LO EW
 - Resummed (NNLL): Geneva, Resbos

aMC@NLO

- PS: MadGraph5_aMC@NLO (0,1,2j at NLO, FxFx), Powheg (NLO), Powheg+MiNLO (0,1j at NLO)

CERN

D. Zanzi

- p_T^{\parallel} , ϕ^* , y^{\parallel} differential Z cross section in ee, $\mu\mu$ events at 13 TeV with 35.9 fb⁻¹ (also 2D $p_T^{\parallel}-y^{\parallel}$ differential cross section)
 - fiducial selection: fiducial selection (leptons after FSR): $p_T > 25$ GeV, $|\eta_1| < 2.4$, $|m_{\parallel} 91.2| < 15$ GeV
- Normalised cross section uncertainties smaller than 0.5% for p_T <50 GeV
- Measurements compared fixed-order, resummed and parton shower predictions
 - FO: Z at NNLO QCD (FEWZ) and Z+j at NNLO QCD (ZjNNLO). LO EW
 - Resummed (NNLL): Geneva, Resbos
 - PS: MadGraph5_aMC@NLO (0,1,2j at NLO, FxFx), Powheg (NLO), Powheg+MiNLO (0,1j at NLO)

D. Zanzi

- $|\eta_{\mu}|$ -differential fiducial W cross section and charge asymmetry
 - $W \rightarrow \mu \nu$ events with 20 fb⁻¹ of *pp* collisions at 8 TeV
 - results consistent with $W \rightarrow e_v$ at 8TeV (JHEP05(2018)077)
 - fiducial selection (born lepton): $p_T^{\mu}>25$ GeV, $p_T^{\nu}>25$ GeV, $|\eta_{\mu}|<2.4$, $m_T>40$ GeV
- Dominant uncertainty from luminosity (1.9%), other uncertainties at ~0.5%
- Measurements compared to DYNNLO predictions with different PDF sets
 - data at 1% precision can discriminate among PDF sets

- Differential fiducial W[±],Z cross sections and W charge asymmetry at 5.02 TeV
 - 25 pb⁻¹ of *pp* collisions (reference for *PbPb* run)
 - fiducial selection (born leptons):
 - W: pτ^I>25 GeV, pτ^v>25GeV, |η|<2.5, mτ>40GeV
 - Ζ: p_Tl>20 GeV, |η|<2.5, 66<m_{ll}<116GeV
- Dominant uncertainties from luminosity (1.9%) and lepton selection efficiencies
- Measurements (~2% precision) compared to DYNNLO predictions with different PDF sets
 - 1-2 σ deviations, in particular in central y_{II} (consistent with 7 TeV result <u>EPJC77(2017)367</u>)

EPJC79(2019)128 23

D. Zanzi

- LHC experiments reaching unprecedented precisions
 - accurate knowledge of detector at different energies and pileup conditions
 - individual LHC experiments at similar precision of combined LEP, SLD and Tevatron EW measurements
 - (multi-)differential W,Z cross sections at sub-percent precision
- Prediction uncertainties (PDFs) limiting factor in exploiting full LHC potential for EW measurements
- Experimental and theory communities working towards future measurements and combinations
 - studies of differences/correlations among PDF sets
 - studies of O(1%) corrections from EW, QED, HO and NP QCD effects and their correlations
 - better assessment of theory uncertainties
 - use of high-precision LHC data to improve knowledge of (non-)perturbative QCD and of proton structure

 $\sin^2 \theta_W = 1 - M_W^2 / M_Z^2$

Additional Material

D. Zanzi

p_T^W Prospects

- Improved N3LL+NNLO predictions?
 - preferable to MC tunes which cannot model all corners of phase space and are not expected to scale properly with energy
 - MC tunes at <1% precision to be handled with care to avoid unphysical correlations
- Promising results, but 1% uncertainty won't be reached soon
 - currently good agreement with data in different eta/ mass bins at 5% precision
 - uncertainty on W/Z ratio depends a lot on correlation scheme (not yet established)
- LHC W,Z measurements, at low and high μ , will help improving predictions (p_T^W, UE, PDF) and
 - study mechanisms responsible for differences in Z and W pTs (eg HF initial state partons)
 - energy dependence in p_T modelling
- Efforts ongoing in benchmarking resummed calculations within LHC EW precision group

D. Zanzi

sin20W

- Z boson couplings differ between L- and R-handed leptons and this leads to an asymmetry in the angular distributions of charged leptons from Z decays
- This asymmetry depends on the weak mixing angle $\sin 2\theta W$ that is the relative coupling strengths between photon and Z boson
- Differential LO cross section Z/γ^{*}→II decay (θ is angle between lepton and quark, s is q/q CoME)
- Asymmetric term B generated by $\chi 1$ interference between Z and γ^* (proportional to couplings not dependent on sin2 θ W) and $\chi 2$ Z Breit-Wigner (with vector couplings proportional to sin2 θ W)
- Experimental asymmetry AFB (θ^* is angle between negative lepton and quark in Collin-Soper frame) depends directly on axial and vector couplings, and on sin2 θ W that relates the two
 - in decay lepton full phase space AFB=3/8A4

 $\sin^2 heta_{OS} = 1 - rac{m_W^2}{m_Z^2}$ on shell definition, valid at all orders $\sin^2 \theta_{eff}^l = (1 - \frac{m_W^2}{m_Z^2}) K_Z^l$ $\frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta)} = \frac{\alpha^2}{4s} \left[\frac{3}{8} A(1 + \cos^2\theta) + B\cos\theta \right]$ $A = Q_l^2 Q_q^2 - 2Q_l g_V^q g_V^l \chi_1 + (g_A^{q2} + g_V^{q2})(g_A^{l^2} + g_V^{l^2})\chi_2,$ $B = -4Q_l g^q_A g^l_A \chi_1 + 8g^q_A g^q_V g^l_A g^l_V \chi_2,$ $g'_A = t'_3$ $g_V^f = t_3^f - (2Q_f \times \sin^2 \theta_W)$ $A_{\rm FB} = \frac{N(\cos{\theta^*} > 0) - N(\cos{\theta^*} < 0)}{N(\cos{\theta^*} > 0) + N(\cos{\theta^*} < 0)} = \frac{3}{8}\frac{B}{A}$

ATL-PHYS-PUB-2018-037 28

- A_{FB},A₄ arise from
 - Z/γ* interference (strongly mll dependent)
 - Z coupling (sensitive to sin²θ^f_{eff} and constant in mll, no need for fine binning in m^{ll})
- Asymmetries dependent on quark flavours and dilution effect

 $+\frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi + A_4\cos\theta$

 $+A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$

 $\mathrm{d}\sigma^{U+L}$

Advantages of harmonic decomposition compared to fiducial cross section measurement

 $\phi_{cs}^{)}$

- can constraint experimental systematics
- extrapolation to full phase space reduces theory systematics and allows for channel-to-channel comparison without extrapolation
- Cons: more sensitive to NLO EW corrections (including boxes) that can break decomposition
- More details in https://indico.cern.ch/event/ 749003/contributions/3329387/attachments/ <u>1826179/2988810/armbruster.pdf</u>

р

EW Corrections

A. Armbruster at DIS2019 (link)

Ai Results

0										
E			70 < m	ll < 80 GeV	7			70 < m	ll < 80 GeV	7
	yu	Data	Top+EW	Multijets	Non-fiducial Z	yu	Data	Top+EW	Multijets	Non-fiducial Z
	0-0.8	106 718	0.023	0.015	0.010	0-0.8	124 050	0.019	0.017	0.009
	0.8-1.6	95 814	0.015	0.020	0.010	0.8-1.6	137 984	0.015	0.014	0.014
	1.6-2.5	47 078	0.012	0.041	0.009	1.6-2.5	74 976	0.010	0.011	0.019
		$80 < m_{ll} < 100 \text{GeV}$						$80 < m_l$	$l < 100 {\rm GeV}$	V
	yu	Data	Top+EW	Multijets	Non-fiducial Z	yu	Data	Top+EW	Multijets	Non-fiducial Z
	0-0.8	2 697 316	0.003	0.001	< 0.001	0-0.8	2 866 016	0.002	0.001	< 0.001
	0.8-1.6	2 084 856	0.002	0.001	< 0.001	0.8-1.6	2 948 371	0.002	0.001	< 0.001
	1.6-2.5	839 424	0.002	0.002	< 0.001	1.6-2.5	1 314 890	0.002	0.001	< 0.001
			100 < m	11 < 125 Ge	v			100 < m	11 < 125 Ge	V
	yu	Data	Top+EW	Multijets	Non-fiducial Z	yu	Data	Top+EW	Multijets	Non-fiducial Z
	0-0.8	106 855	0.034	0.016	0.023	0-0.8	119 650	0.030	0.023	0.023
	0.8-1.6	80 403	0.025	0.019	0.027	0.8-1.6	122 775	0.020	0.015	0.023
	1.6-2.5	28 805	0.015	0.025	0.029	1.6-2.5	55 886	0.010	0.005	0.022

eeCF

 $80 < m_{11} < 100 \text{ GeV}$

		00 < m ₁₁ < 100 GeV						
yu	Data	Top+EW	Multijets	Non-fiducial Z				
1.6-2.5	702 142	0.001	0.010	0.017				
2.5-3.6	441 104	0.001	0.011	0.013				

Ai Control Plots

- Good modelling of angular distributions between data and MC "prefit"
- Angular coefficients measured in-situ → theory modelling corrected within fit
- Very high and very low $\cos\theta$ regions in eeCF related to pTZ modelling
 - little impact on measured $sin 2\theta W$, covered by systematics
- Large lever-arm in eeCF channel: contributes to superiority of channel

-0.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

D. Zanzi

CMS sin20W

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta^*} = \frac{3}{8}\left[1 + \cos^2\theta^* + \frac{A_0}{2}(1 - 3\cos^2\theta^*) + A_4\cos\theta^*\right]$$

The A_{FB} value in each $(m_{\ell\ell}, y_{\ell\ell})$ bin is calculated using the "angular event weighting" method, described in Ref. [40], in which each event with a $\cos \theta^*$ value (denoted as "c"), is reflected in the denominator (*D*) and numerator (*N*) weights through:

$$w_{\rm D} = \frac{1}{2} \frac{c^2}{(1+c^2+h)^3},\tag{8}$$

$$w_{\rm N} = \frac{1}{2} \frac{|c|}{(1+c^2+h)^2},\tag{9}$$

where $h = 0.5A_0(1 - 3c^2)$. Here, as a baseline we use the $p_{T,\ell\ell}$ -averaged A_0 value of about 0.1 in each measurement ($m_{\ell\ell}, y_{\ell\ell}$) bin, as predicted by the signal MC simulation. Using the weighted sums N and D for forward ($\cos \theta^* > 0$) and backward ($\cos \theta^* < 0$) events, we obtain

$$D_{\rm F} = \sum_{c>0} w_{\rm D}, \quad D_{\rm B} = \sum_{c<0} w_{\rm D},$$
 (10)

$$N_{\rm F} = \sum_{c>0} w_{\rm N}, \quad N_{\rm B} = \sum_{c<0} w_{\rm N},$$
 (11)

from which the weighted $A_{\rm FB}$ of Eq. (2) can be written as:

$$A_{\rm FB} = \frac{3}{8} \frac{N_{\rm F} - N_{\rm B}}{D_{\rm F} + D_{\rm B}}.$$
 (12)

Source	Muons	Electrons
Size of MC event sample	0.00015	0.00033
Lepton selection efficiency	0.00005	0.00004
Lepton momentum calibration	0.00008	0.00019
Background subtraction	0.00003	0.00005
Modeling of pileup	0.00003	0.00002
Total	0.00018	0.00039
Modeling parameter	Muons	Electrons
Modeling parameter Dilepton $p_{\rm T}$ reweighting	Muons 0.00003	Electrons 0.00003
Modeling parameter Dilepton $p_{\rm T}$ reweighting $\mu_{\rm R}$ and $\mu_{\rm F}$ scales	Muons 0.00003 0.00011	Electrons 0.00003 0.00013
Modeling parameter Dilepton p_T reweighting μ_R and μ_F scales POWHEG MINLO Z+j vs. Z at NLC	Muons 0.00003 0.00011 0.00009	Electrons 0.00003 0.00013 0.00009
Modeling parameter Dilepton p_T reweighting μ_R and μ_F scales POWHEG MINLO Z+j vs. Z at NLC FSR model (PHOTOS vs. PYTHIA 8)	Muons 0.00003 0.00011 0.00009 0.00003	Electrons 0.00003 0.00013 0.00009 0.00005
Modeling parameter Dilepton p_T reweighting μ_R and μ_F scales POWHEG MINLO Z+j vs. Z at NLC FSR model (PHOTOS vs. PYTHIA 8) Underlying event	Muons 0.00003 0.00011 0.00009 0.00003 0.00003	Electrons 0.00003 0.00013 0.00009 0.00005 0.00004
Modeling parameter Dilepton $p_{\rm T}$ reweighting $\mu_{\rm R}$ and $\mu_{\rm F}$ scales POWHEG MINLO Z+j vs. Z at NLC FSR model (PHOTOS vs. PYTHIA 8) Underlying event Electroweak $\sin^2 \theta_{\rm eff}^{\ell}$ vs. $\sin^2 \theta_{\rm eff}^{\rm u,d}$	Muons 0.00003 0.00011 0.00009 0.00003 0.00003 0.00001	Electrons 0.00003 0.00013 0.00009 0.00005 0.00004 0.00001

Channel	Statistical uncertainty
Muons	0.00044
Electrons	0.00060
Combined	0.00036

Channel	Not constraining PDFs	Constraining PDFs
Muons	0.23125 ± 0.00054	0.23125 ± 0.00032
Electrons	0.23054 ± 0.00064	0.23056 ± 0.00045
Combined	0.23102 ± 0.00057	0.23101 ± 0.00030

CERN

$sin^2\theta_W$ PDF uncert

- As measurement performed in mZ and yZ bins, PDF correlation patterns are important in final impact of PDF syst on measurement
 - PDF and sin2θW correlations very different in mll
- Correlations exploited to reduce PDF syst by constraints to data

Figure 4: Correlations between the predicted angular coefficient A_4 as a function of y^Z , shown for the CT14 (top left), MMHT14 (top right), NNPDF31 (bottom left), and ATLAS epWZ16 (bottom right) PDF sets. The colour scale runs over the whole range from +1 (yellow) to -1 (blue).

ATL-PHYS-PUB-2018-004

- Fit closes well in mll since variations in A4 from $sin2\theta W$ and PDF are different
- Although with uncertainties, fit not closing in yll, possibly because of course analysis yll-bins and low stat at high yll

D. Zanzi

ATL-PHYS-PUB-2018-004 36

Generated		PDFs used for interpretation of A4 versus $\sin^2 \theta_W$								
pseudodata		Before PDF constraint					After PDF constraint			
	CT10	CT14	MMHT14	NNPDF31	epWZ16	CT10	CT14	MMHT14	NNPDF31	epWZ16
CT10	-	20	2	11	109	-	3	19	19	52
CT14	-20	-	-18	-9	91	8	-	21	21	56
MMHT14	-1	18	-	9	108	-25	-11	-	1	31
NNPDF31	-10	9	-9	-	99	-14	-9	4	-	43
epWZ16	-116	-95	-114	-105	-	-44	-66	-42	-42	-

- differences mostly within 1σ PDF uncertainties (except for epWz16)
- expected statistical uncertainty of ~20x10⁻⁵

ATL-PHYS-PUB-2018-004 37

Z at 13TeV

Z at 13TeV

2.3 fb⁻¹ (13 TeV)

1000

2000

m [GeV]

2.3 fb⁻¹ (13 TeV)

1000 2000

Full phase space with dressed leptons

dressed: four-momenta of all simulated photons originating from the leptons are summed within a cone of $\Delta R < 0.1$ around the candidate lepton

> Fiducial cross section with leptons after FSR

D. Zanzi

╫╫╫┼┼┼_{╪╴}

CMS Preliminary

35.910 (13 TeV)

- Data

MINLO

aMC@NLO

POWHEG

hjl<2.4, p_>25 GeV

11111

aMC@NLO/Date

POWHEG/Data

1.0

0.8

1.0

0.8

CMS Preliminary

(13 TeV)

35.9 fb⁻¹ (13 TeV)

CMS-SMP-17-010 40

Z at 13 TeV

H<2.4. p. >25 GeV

35.9 fb⁻¹ (13 TeV)

φ* (ľ¹Ĭ)

25 È

20

15E

10

5

do/do* [pb] 10-3 $\phi^* = \tan\left(\frac{\pi - \Delta \phi}{2}\right) \sin(\theta_{\eta}^*) \qquad \phi^* \sim p_{\mathrm{T}}^{\mathbf{Z}} / m_{\ell\ell}$ $\cos(\theta_{\eta}^{*}) = \tanh(\frac{\eta^{-} - \eta^{+}}{2}),$ D. Zanzi

Z at 13 TeV

μÏ

$W \rightarrow \mu \nu$ at 8TeV

$W \rightarrow \mu \nu$ at 8TeV

arXiv:1904.05631 (sub. to EPJC) 43

- Precision in lepton efficiency limited by number of Z->II candidates Data/Pred
- Hadronic recoil with particle flow objects
- Calibration of hadronic recoil based on Z->II candidates

Background	$W^+ \to e^+ \nu \ (W^+ \to \mu^+ \nu)$	$W^- \to e^- \nu \ (W^- \to \mu^- \nu)$	$Z \to e^+ e^- \ (Z \to \mu^+ \mu^-)$
	[%]	[%]	[%]
$Z \to \ell^+ \ell^-, \ell = e, \mu$	0.1 (2.8)	0.2(3.8)	—
$W^{\pm} \to \ell^{\pm} \nu, \ \ell = e, \mu$	_	_	$< 0.01 \ (< 0.01)$
$W^{\pm} \to \tau^{\pm} \nu$	1.8 (1.8)	1.8(1.8)	$< 0.01 \; (< 0.01)$
$Z \to \tau^+ \tau^-$	0.1 (0.1)	$0.1 \ (0.1)$	0.07 (0.07)
Multi-jet	0.9(0.1)	$1.4 \ (0.2)$	$< 0.01 \ (< 0.01)$
Top quark	$0.1 - 0.2 \ (0.1 - 0.2)$	$0.1 – 0.2 \; (0.1 – 0.2)$	0.06 (0.08)
Diboson	0.1 (0.1)	$0.1 \ (0.1)$	0.14 (0.08)

1.5

0.5

-30

-20

-10

0

10

Eur. Phys. J. C 79 (2019) 128 44

30

20

u_l [GeV]

$W_{,Z} \underset{M_{W[Z]} \rightarrow B_{W[Z]}}{at 5.02 \text{TeV}} = \frac{N_{W[Z]} - B_{W[Z]}}{C_{W[Z]} \cdot L_{\text{int}}}$

					$W^+ \to \ell^+ \nu$						
$\left \eta_\ell ight ^{\min}$	$\left \eta_{\ell}\right ^{\max}$	$d\sigma/d \eta_{\ell} $ [pb]	$\delta \sigma_{\rm stat} [{\rm pb}]$	$\delta \sigma_{\rm syst} [{\rm pb}]$	$\delta \sigma_{ m lumi} [m pb]$	$\left \eta_\ell ight ^{\min}$	$ \eta_\ell ^{\max}$	$d\sigma/d \eta_{\ell} $ [pb]	$\delta \sigma_{ m stat} [m pb]$	$\delta \sigma_{\rm syst} [{\rm pb}]$	$\delta \sigma_{ m lumi} [m pb]$
0.00	0.21	329	5	8	6	0.00	0.21	456	6	11	9
0.21	0.42	315	5	6	6	0.21	0.42	467	6	9	9
0.42	0.63	315	5	6	6	0.42	0.63	471	6	9	9
0.63	0.84	298	5	6	6	0.63	0.84	460	6	10	9
0.84	1.05	303	5	7	6	0.84	1.05	471	6	11	9
1.05	1.37	286	4	5	6	1.05	1.37	474	5	9	9
1.37	1.52	276	7	7	5	1.37	1.52	482	9	15	9
1.52	1.74	272	4	6	5	1.52	1.74	474	6	11	9
1.74	1.95	249	4	5	5	1.74	1.95	465	6	11	9
1.95	2.18	253	4	6	5	1.95	2.18	446	6	10	9
2.18	2.50	219	4	6	4	2.18	2.50	371	5	10	7
0.00	2.50	1401	7	18	27	0.00	2.50	2266	9	29	43

			min	max						
$\left y_{\ell\ell}\right ^{\min}$	$\left y_{\ell\ell}\right ^{\max}$	$\mathrm{d}\sigma/\mathrm{d} y_{\ell\ell} \mathrm{[pb]}$	$\delta \sigma_{\rm stat} [{\rm pb}]$	$\delta \sigma_{\rm syst} [{\rm pb}]$	$\delta \sigma_{ m lumi} [m pb]$	$ \eta_{\ell} ^{\min}$	$ \eta_\ell ^{\max}$	A_{ℓ}	$\delta A_{ m stat}$	$\delta A_{\rm syst}$
0.0	0.5	103.0	1.7	1.2	1.9	0.00	0.21	0.163	0.010	0.001
0.5	1.0	101.3	1.8	1.1	1.9	0.21	0.42	0.195	0.009	0.001
1.0	1.5	89.6	1.7	0.9	1.7	0.42	0.63	0.201	0.009	0.001
1.5	2.0	60.5	1.4	0.7	1.1	0.63	0.84	0.213	0.010	0.001
2.0	2.5	20.0	0.9	0.4	0.4	0.84	1.05	0.218	0.010	0.001
0.0	2.5	374.5	3.4	3.6	7.0	1.05	1.37	0.248	0.008	0.001
	1	1 (17) 0	010 ()		\mathbf{P}	1.37	1.52	0.272	0.014	0.002
R_{W^+/W^-}		1.017 ± 0	1.52	1.74	0.271	0.009	0.001			
$R_{W/Z}^{\mathrm{fid}}$		9.81 ± 0	1.74	1.95	0.300	0.010	0.001			
$\mathbf{p}^{\mathrm{fid}}$		6.06 ± 0	1.95	2.18	0.276	0.010	0.001			
$n_{W^+/Z}$		0.00 ± 0	2.18	2.50	0.256	0.010	0.001			
R_V^{fi}	$R_{W^-/Z}^{\text{fid}}$ = 3.75 ± 0.05 (stat) ± 0.01 (syst)						Eur. P	hvs. J.	C 79 (2	 2019) 12

D. Zanzi

D. Zanzi

