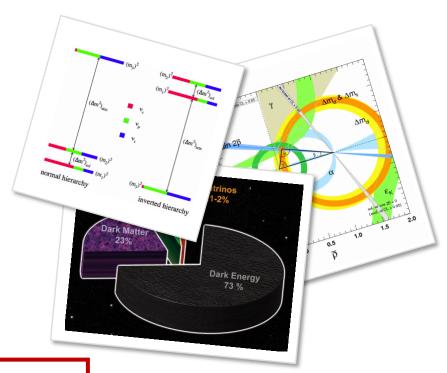


Rare and Exotic Higgs Decays

Linda Finco on behalf of CMS and ATLAS Collaborations

University of Nebraska – Lincoln

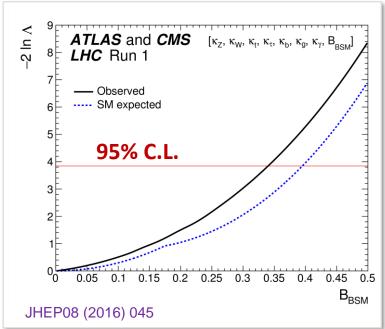
Theoretical Motivations


- The discovery of a new boson consistent with the Standard Model (SM) Higgs boson has completed the SM theory
- Nevertheless, this theory cannot address several crucial issues

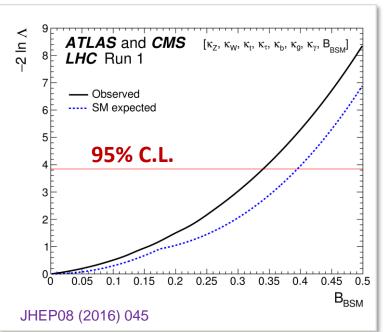
Direct evidence from observation:

- existence of neutrino masses
- existence of dark matter and dark energy
- matter-antimatter asymmetry

Conceptual problems in the SM:


- the large number of free parameters
- the "hierarchy problem"
- the coupling unification

Strong indications that the SM is only a lowenergy expression of a more global theory


Exotic Decays of the Higgs Boson

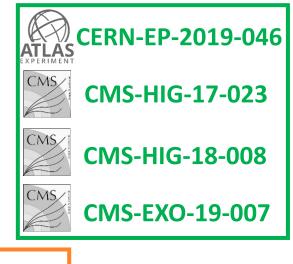
- The SM Higgs boson has a very narrow width (~4 MeV): current limits still allow for additional contributions from BSM decays
- **Constraints** on new physics are still **relatively loose** (Run 1 limit $\mathcal{B}(H \rightarrow BSM) < 34\%$)
- Possibilities to detect BSM physics in the scalar sector:
 - **Direct evidence** through observation of BSM decays of the H boson
 - Indirect evidence through observation of deviations in the couplings of the H boson

Exotic Decays of the Higgs Boson

- The SM Higgs boson has a very narrow width (~4 MeV): current limits still allow for additional contributions from BSM decays
- **Constraints** on new physics are still **relatively loose** (Run 1 limit $\mathcal{B}(H \rightarrow BSM) < 34\%$)
- Possibilities to detect BSM physics in the scalar sector:
 - Direct evidence through observation of BSM decays of the Higgs boson

Indirect evidence
 precision limited, slowly increase with data

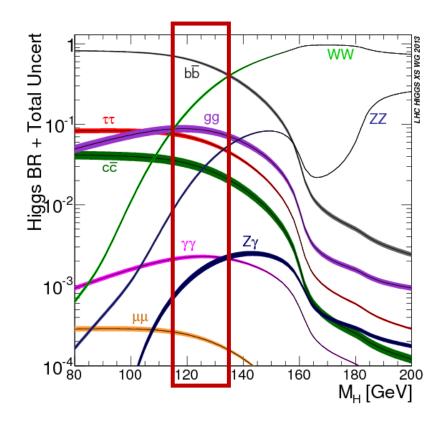
Search for BSM Physics in Higgs Decays


- Search for Higgs boson **decays** to **SM particles**:
 - Very rare decays predicted by the SM
 - An excess on these channels would be an indication of BSM physics
 - **Decays not allowed** in the SM
 - Lepton flavor violating Higgs decays
- Search for Higgs boson decays to non-SM particles:
 - Invisible Higgs boson decays, with H produced via ggF, VBF, VH or ttH (H → invisible)
 - Higgs boson decays to light pseudoscalars/scalars (H → aa), decaying to SM particles

Search for BSM Physics in Higgs Decays

- Search for Higgs boson **decays** to **SM particles**:
 - Very rare decays predicted by the SM
 - An excess on these channels would be an indication of BSM physics
 - Decays not allowed in the SM
 - Lepton flavor violating Higgs decays
- Search for Higgs boson **decays** to **non-SM particles**:
 - Invisible Higgs boson decays, with H produced via ggF, VBF, VH or ttH (H → invisible)
 - Higgs boson decays to light pseudoscalars/scalars (H → aa), decaying to SM particles

Phys. Lett. B 790 (2019) 1



CMS-PAS-HIG-18-006

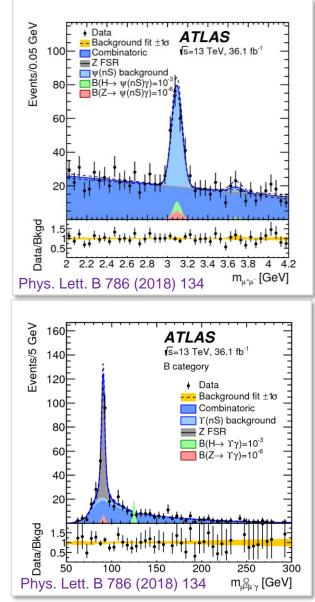
MOST RECENT RESULTS SHOWN: MANY OTHERS AVAILABLE

Rare Decays

- Important to look at **all** the possible **decay channels** of Higgs boson at the LHC
- Some of them, with **very small branching fraction**, have **yet to be observed**
- Rare decay rates can deviate from SM expectations and be enhanced as predicted in several BSM models

CHANNEL	BR (SM)
$H \rightarrow ZZ \rightarrow 4\nu \text{ (H} \rightarrow \text{inv)}$	$\sim 1 \times 10^{-3}$
$H \to \mu \mu$	$\sim 2 \times 10^{-4}$
$H \to \ Z Y \to \ell \ell Y$	$\sim 1 \times 10^{-4}$
H →J/ψγ	~3× 10 ⁻⁶
$H\to\Upsilon\gamma$	$\sim 5 \times 10^{-9}$
$H\to\Upsilon\Upsilon$	$\sim 2 \times 10^{-9}$
H →J/ψ J/ψ	$\sim 1.5 \times 10^{-10}$

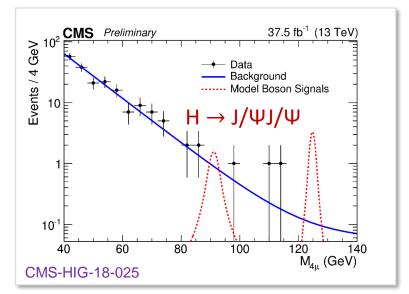
Rare Decays: $H \rightarrow J/\psi y - Y y$

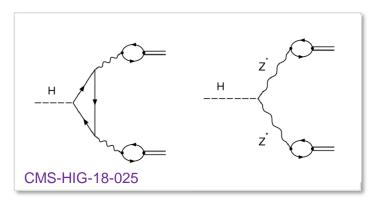


- H → Mγ (with M J^{pc}= 1⁻⁻) decays provide a clean probe of the charm and bottom quark Yukawa couplings
- Focus on the clean ψ(nS)/Y(nS) → μ⁺μ⁻ decays and target high rate inclusive H and Z production
- Limits able to **exclude** $H \rightarrow \mathcal{M}\gamma$ **BR at 10⁻⁴**

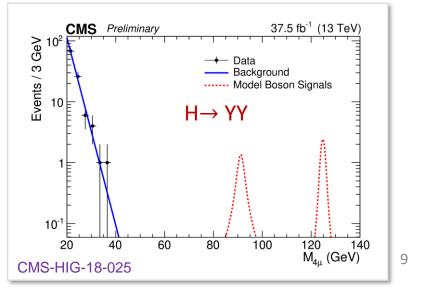
CHANNEL	BR (SM)
H →J/ψγ	~3× 10 ⁻⁶
$H\to\Upsilon\varsigma$	$\sim 5 \times 10^{-9}$

Branching fraction limit $(95\% \text{ CL})$	Expected	Observed
$\mathcal{B}\left(H \to J/\psi\gamma\right)\left[\ 10^{-4}\ \right]$	$3.0^{+1.4}_{-0.8}$	3.5
$\mathcal{B}\left(H \to \psi\left(2S\right) \gamma\right) \left[10^{-4} \right]$	$15.6^{+7.7}_{-4.4}$	19.8
$\mathcal{B}\left(H \to \Upsilon(1S) \gamma\right) \left[\ 10^{-4} \ \right]$	$5.0^{+2.4}_{-1.4}$	4.9
$\mathcal{B}(H \to \Upsilon(2S) \gamma) [\ 10^{-4} \]$	$6.2^{+3.0}_{-1.7}$	5.9
$\mathcal{B}\left(H \to \Upsilon(3S) \gamma\right) \left[\ 10^{-4} \ \right]$	$5.0^{+2.5}_{-1.4}$	5.7


Phys. Lett. B 786 (2018) 134

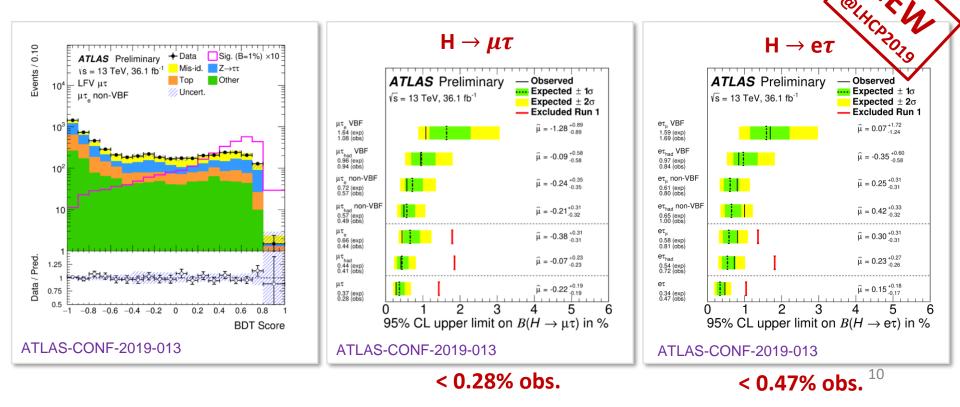


Rare Decays: $H \rightarrow J/\psi J/\psi - YY$

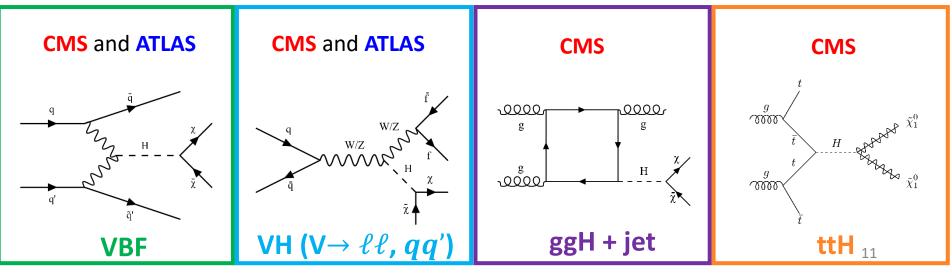

- Almost background-free
 sensitivity scales with luminosity
- 4-muon final state: very clean signature with narrow intermediate resonant states
- **Dedicated triggers**: $2\mu (m_{J/\psi})$, $3\mu (m_{Y})$

CHANNEL	BR (SM)
$H\to\Upsilon\Upsilon$	$\sim 2 \times 10^{-9}$
H →J/ψ J/ψ	$\sim 1.5 \times 10^{-10}$

Exclusion Limits at 95%	observed	expected
${\cal B}({ m H} ightarrow { m J}/\psi { m J}/\psi) imes 10^3$	1.8	$1.8\substack{+0.2 \\ -0.1}$
${\cal B}({ m H} ightarrow { m YY}) imes 10^3$	1.4	1.4 ± 0.1



LF Violating Decays: H \rightarrow $e\tau$ - $\mu\tau$

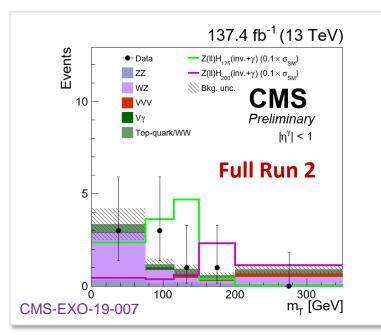

- Lepton flavor violating Higgs boson decays in decays are forbidden in the SM
- Search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ in 4 signal regions ($\ell \tau_{\ell'}$, $\ell \tau_{had}$, VBF, non-VBF)
- BDT algorithms used to enhance the signal separation from the background
- Main backgrounds: Z → ττ, top-quark processes, backgrounds from misidentified objects

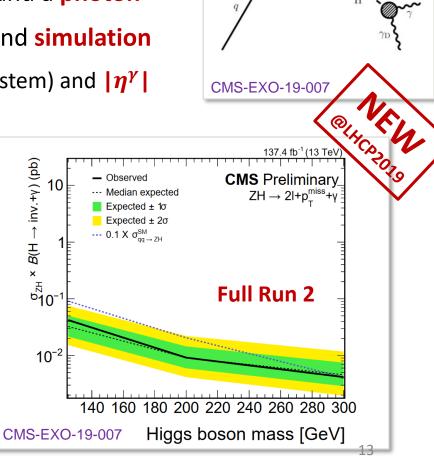
Higgs To Invisible Searches


- In the SM, $H \rightarrow invisible$ only via $H \rightarrow ZZ^* \rightarrow 4v$ with BR of 0.1%
- Rate for invisible decays significantly enhanced in several BSM scenarios
- The 125 GeV boson could be a **portal** between a **dark sector** and the SM sector
- All the main Higgs production modes can be used to probe its coupling with "invisible" particles
- All searches characterized by large p_T^{miss} (DM particles escape detection)
- The Higgs boson **recoils against a visible system** used to distinguish between production modes

Higgs To Invisible Searches

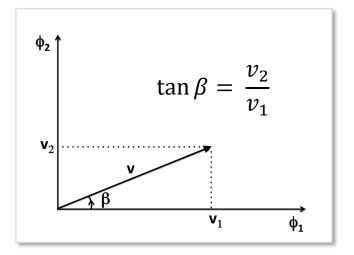
- Both ATLAS and CMS performed
 - A combination of the different production modes of 2016 measurements, assuming SM production cross sections
 - A combination of Run 1 + Run 2 analyses
- Current upper limits are:
 - $\mathcal{B}(H \rightarrow inv) < 0.26(0.17)$ observed (expected) at 95% CL (ATLAS)
 - $\mathcal{B}(H \rightarrow inv) < 0.19(0.15)$ observed (expected) at 95% CL (CMS)




Search for Dark Photons in ZH Decays

 Z/γ^*

- Massless dark photon that couples to Higgs boson*
 - $\gamma_{\rm D}$ is a dark photon, which is **undetected** (large $p_{\rm T}^{\rm miss}$)
- Two opposite-sign same-flavor leptons and a photon
- Background from data-based method and simulation
- m_T (transverse mass of p_T^{miss} and photon system) and $|\eta^{\gamma}|$ used in the fit



*https://arxiv.org/abs/1603.01377

Exotic Decays in 2HDMs

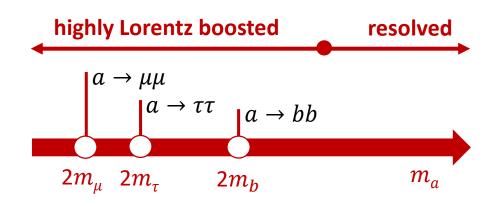
- Two-Higgs-doublet models are simple extensions of the SM introducing two doublets of scalar fields (ϕ_1 and ϕ_2) in the SM Lagrangian
- After symmetry breaking, five physical states are left (h, H, A and H[±] bosons)
- Four types, according to different patterns of quark and lepton couplings
- Further extension 2HDM+S: possible search for H → aa (a pseudoscalar)
- Exotic decays still consistent with all the LHC measurements so far

2HDM	u-type	d-type	lepton
Type I	φ ₂	φ ₂	φ ₂
Type II	φ ₂	Φ_1	Φ_1
Type III	φ ₂	φ ₂	Φ_1
Type IV	Φ_2	φ_1	φ ₂

Final States of $H \rightarrow aa$ Decays

$a \rightarrow bb$

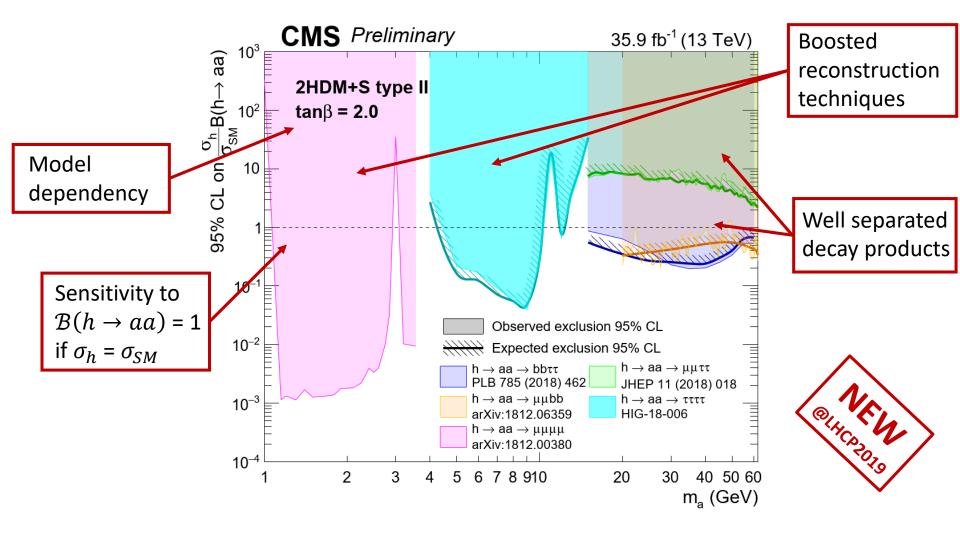
✓ Large BR

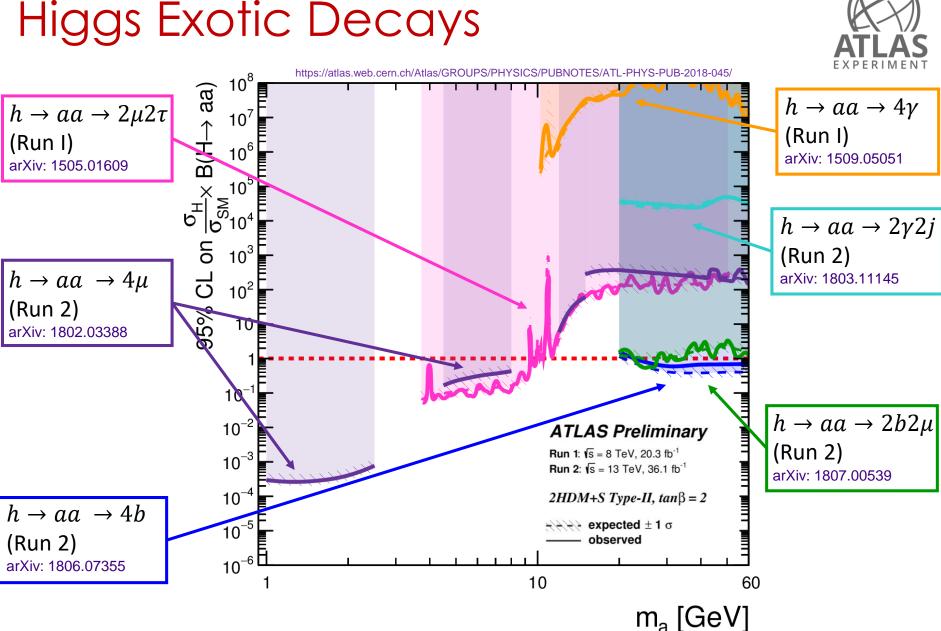

- × Hard to trigger
- × Low identification efficiency
- imes High p_T thresholds
- × Large jet-backgrounds

a ightarrow au au

Large BR

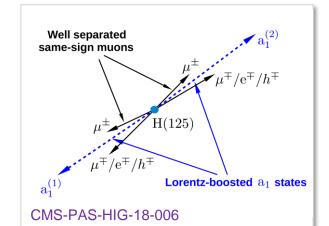
- Possible to trigger on leptonic τ decays
- × Low τ_h identification efficiency, with high p_T thresholds (> 20 GeV)

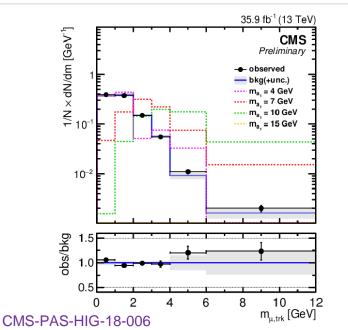

$a \rightarrow \mu \mu$ $\checkmark Excellent mass resolution$ $\checkmark Easy to trigger$ $\checkmark Easy identification, with low p_T$ $\checkmark Open for any m_a > 2m_\mu$ $\leftthreetimes Low BR$

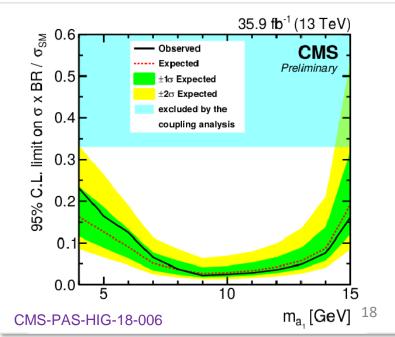


With **SM-like couplings**: $\mathcal{B}(a \to bb) \sim 9 \mathcal{B}(a \to \tau\tau) \sim 1700 \mathcal{B}(a \to \mu\mu)$

Higgs Exotic Decays

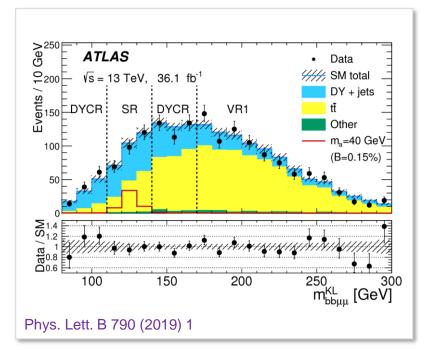


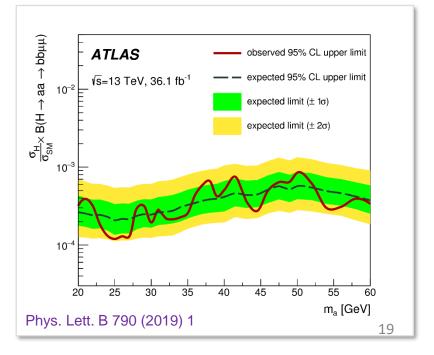

Exotic Decays: $H \rightarrow aa \rightarrow 2\mu 2\tau/4\tau$

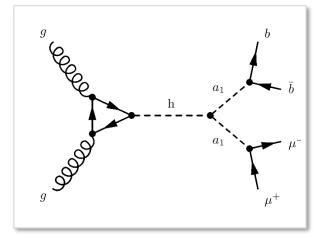


- Highly boosted *a* boson, non-isolated muons
- 4 GeV < m_a < 15 GeV
- Selection: SS μ pair + two 1-prong τ decays (OS wrt nearest μ)
- Main background: QCD multijet events
- **2D search** in $(m_{\mu 1, trk1}, m_{\mu 2, trk2})$ plane
- Reduced sensitivity as topology becomes resolved

• Improves Run 1 CMS limits by up to a factor 10




Exotic Decays: $H \rightarrow aa \rightarrow 2b2\mu$



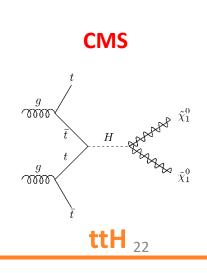
- Clean di-muon signature used for triggering and precision mass reconstruction
- $m_{\mu\mu}$ resolution 10 times better than m_{bb}
- $m_{\mu\mu}^{\mu}$ and b-jet energies inputs of a kinematic fit
 - $m_{bb\mu\mu}$ resolution improved by a factor of 2
- 18 GeV < m_a < 62 GeV,

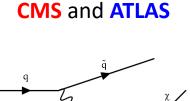
Conclusions

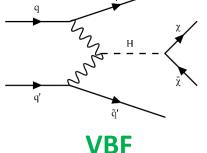
- The Scalar Sector of the SM is a favored place to look for new physics effects
- LHC data are sensitive to some theoretical models (2HDM, NMSSM...)
- No significant deviations from SM predictions yet observed
- We have just started to extract the physics potential of the 13 TeV dataset
- We have a comprehensive view of the potential of the main channels from the Run1 experience
- Feedback with theory community fundamental to keep interest in exploring these signatures

Backup

Higgs To Invisible Searches

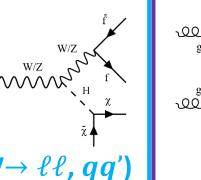


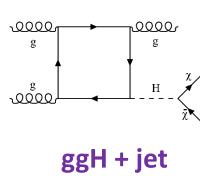

- most sensitive mode
- 2-jets with large Δη_{jj} and m_{ii}
- E_T^{miss} > 250 (180) GeV
- Δη_{ii} > **1** (4.8)
- Veto leptons and jets
- Signal extracted by fitting m_{ii}
- Main bkg: Z(vv)+jets and W+jets (QCD and EW prod)


- **E_T^{miss} + 2-leptons** from Z or **high p_T jets** from V(qq')
- Signal extracted by fitting BDT classifier (E_T^{miss})
- Main bkg: ZZ, WZ and residuals from WW and top backgrounds

- Large p_T^{miss} + high p_T central jet
- $E_T^{miss} > 250 \text{ GeV}$
- At least one jet p_T > 100 GeV, |η| < 2.4
- Veto leptons and jets
- Overlap with VBF and V(qq)H removed
- Signal extracted by fitting p_T^{miss}
- Main bkg: Z(vv)+jets and W+jets

- Reinterpretation of stop searches
- OL/1L/2L + (b) jets + p_T^{miss}
- Signal extracted by **counting data** event in SR
- Main bkg: W+jets, Z+ jets, tt, single top





CMS and ATLAS

CMS

