

Global fits of the SM parameters

Jens Erler

JGU & Helmholtz Institute Mainz (on leave from IF-UNAM)

LHCP 2019

May 20-25, 2019

Puebla, Mexico

Weak mixing angle: global survey of $\sin^2\theta_W$ determinations

Why pushing $\sin^2\theta_{W}$?

- \blacksquare compute and measure $sin^2\theta_W$ and relate to M_W
- → doubly over-constrained system at sub-‰ precision
- key test of EW symmetry breaking sector
- comparisons of different measurements, scales, and initial/final states provide window to physics beyond the SM
- → global analysis

$\sin^2\theta_W(0)$: approaches

- tuning in on the Z resonance
 - FB and LR asymmetries in e⁺e⁻ annihilation near s = M_Z^2
 - FB asymmetries in pp (p \overline{p}) Drell-Yan around $m_{\parallel} = M_{Z}$

	v scattering	PVES	
leptonic	ν _μ – e -	e e-	
DIS	heavy nuclei (NuTeV)	deuteron (PVDIS, SoLID)	
elastic	CEVNS (COHERENT)	proton, ¹² C (Qweak, P2)	
APV	heavy alkali atoms and ions	isotope ratios (Mainz)	

$\sin^2\theta_W(0)$: approaches

tuning in on the Z resonance

The asymmetries in eters to measure $S = M_Z^2$ metries is recent first measure $S = M_Z^2$ wery recent first an around $M_{\parallel} = M_Z$ - FB and LR asymmetries in ete-

- FB asymmetries

	v scattering	PVES	
leptonic	ν _μ – e ⁻	e e-	
DIS	heavy nuclei (NuTeV)	deuteron (PVDIS, SoLID)	
elastic	CEVNS (COHERENT)	proton, ¹² C (Qweak, P2)	
APV	heavy alkali atoms and ions	isotope ratios (Mainz)	

sin²θw measurements

sin²θw measurements

sin²θw measurements

Mw measurements

(incl. correlated theory errors)

Theoretical uncertainties: correlations in precision observables

Theory errors

- hadronic vacuum polarization and light-by-light $(g_{\mu} 2)$
- non-factorizable QCD corrections (Γ_Z^{had})
- non-resonant corrections to Breit-Wigner shape (σ_{had})
 Grassi, Kniehl & Sirlin, PRL 86 (2001)
- W & Z self-energies
 - loop factors including enhancement factors such as $N_C = N_F = 3$ or $sin^{-2}\theta_W \approx m_t^2/M_W^2 \approx 4$ amount to 0.020 (QED), 0.116 (QCD), 0.032 (CC), 0.029 (NC)
 - parametrized by $\Delta S_Z = \pm 0.0034$ (may be combined with $\Delta \alpha_{had}$), $\Delta T = \pm 0.0073$ (t-b doublet) and $\Delta U = S_W S_Z = \pm 0.005 \, I$
 - assuming ΔS_Z, ΔT and ΔU to be sufficiently different (uncorrelated) induces theory correlations between different observables

 Schott & JE, PPNP 106 (2019)

$M_H - m_t$

indirect m_t:

 $176.4 \pm 1.8 \text{ GeV}$ (2.0 σ high)

indirect M_H:

90⁺¹⁷₋₁₅ GeV (1.9 σ low)

incl. theory error:

indirect M_H:

9I⁺¹⁸₋₁₆ GeV (1.8 σ low)

Vacuum polarizations in global fits: $\alpha(M_Z) \ sin^2\theta_W(0) \ g_\mu-2 \ m_{b,c}$

$\alpha(M_Z)$

- Dispersive approach: integral over $\sigma(e^+e^- \rightarrow hadrons)$ and τ -decay data
- $\alpha^{-1}(M_Z) = 128.947 \pm 0.012$ Davier et al., EPJC 77 (2017)
- $\alpha^{-1}(M_Z) = 128.958 \pm 0.016$ Jegerlehner, arXiv:1711.06089
- $\alpha^{-1}(M_Z) = 128.946 \pm 0.015$ Keshavarzi et al., PRD 97 (2018)
- $\alpha^{-1}(M_Z) = 128.949 \pm 0.010$ Ferro-Hernández & JE, JHEP 03 (2018)
 - This value is converted from the MS scheme and uses both e⁺e⁻ annihilation and T decay spectral functions

 Davier et al., EPJC 77 (2017)
 - PQCD for $\sqrt{s} > 2$ GeV (using $\overline{m}_c \& \overline{m}_b$)
- (anti)correlation with $g_{\mu} 2$ at two (three) loop order and with $\sin^2\theta_W(0)$

$g_{\mu}-2$

PQCD:

Luo & JE, PRL 87 (2001)

 $(a_{\mu}^{hvp})^c = (14.6 \pm 0.5_{theory} \pm 0.2_{mc} \pm 0.1_{\alpha s}) \times 10^{-10} (a_{\mu}^{hvp})^b = 0.3 \times 10^{-10}$

Lattice gauge theory:

A. Gérardin et al., arXiv:1904.03120

$\sin^2\theta_W(\mu)$

Ferro-Hernández & JE, JHEP 03 (2018)

$\sin^2\theta_W(\mu)$

Ferro-Hernández & JE, JHEP 03 (2018)

$\sin^2\theta_W(0)$ and $\Delta\alpha(M_Z)$

$$\mu^{2} \frac{d\hat{v}_{f}}{d\mu^{2}} = \frac{\hat{\alpha}Q_{f}}{24\pi} \left[\sum_{i} K_{i} \gamma_{i} \hat{v}_{i} Q_{i} + 12\sigma \left(\sum_{q} Q_{q} \right) \left(\sum_{q} \hat{v}_{q} \right) \right]$$

$$\mu^{2} \frac{d\hat{\alpha}}{d\mu^{2}} = \frac{\hat{\alpha}^{2}}{\pi} \left[\frac{1}{24} \sum_{i} K_{i} \gamma_{i} Q_{i}^{2} + \sigma \left(\sum_{q} Q_{q} \right)^{2} \right]$$

- coupled system of differential equations Ramsey-Musolf & JE, PRD 72 (2005)
- $\Delta \alpha(M_Z)_{had} \text{ errors in } \sin^2\theta_W(0) = \kappa(0) \sin^2\theta_W(M_Z) \text{ add since}$ $M_Z^2 \propto g_Z^2(M_Z) \ v^2 \propto \left[\alpha/s^2_W \ c^2_W\right] (M_Z) \ G_F^{-1}$

$\overline{m}_{c}(\overline{m}_{c})$

- derived from another set of dispersion integrals
- input: electronic widths of J/ψ and ψ(2S)
- continuum contribution from self-consistency between sum rules

 $\overline{m}_c(\overline{m}_c) = 1272 \pm 8 + 2616 [\overline{\alpha}_s(M_Z) - 0.1182] \text{ MeV}$ Masjuan, Spiesberger & JE, EPJC 77 (2017)

Fit Results

Performed with package GAPP (Global Analysis of Particle Properties)

Standard global fit

M _H	125.14 ± 0.15 GeV	
M_Z	91.1884 ± 0.0020 GeV	
$\overline{\mathbf{m}}_{b}(\overline{\mathbf{m}}_{b})$	4.180 ± 0.021 GeV	
$\Delta \alpha_{had}^{(3)}(2 \text{ GeV})$	$(59.0 \pm 0.5) \times 10^{-4}$	

$\overline{m}_{t}(\overline{m}_{t})$	163.28 ± 0.44 GeV	1.00	-0.13	-0.28
$\overline{m}_{c}(\overline{m}_{c})$	1.275 ± 0.009 GeV	-0.13	1.00	0.45
$\alpha_s(M_z)$	0.1187 ± 0.0016	-0.28	0.45	1.00

other correlations small

Freitas & JE, PDG 2018

Po fit

- - where $\Delta m_i^2 \ge (m_1 m_2)^2$
 - despite appearance there is decoupling (see-saw type suppression of Δm_i^2)
- $\rho_0 = 1.00039 \pm 0.00019 (2.0 \sigma)$
 - $(16 \text{ GeV})^2 \leq \sum_i C_i/3 \Delta m_i^2 \leq (48 \text{ GeV})^2 @ 90\% \text{ CL}$
 - Y = 0 Higgs triplet VEVs v_3 strongly disfavored ($\rho_0 < 1$)
 - consistent with |Y| = I Higgs triplets if $v_3 \sim 0.01 v_2$

S and T

S	0.02 ± 0.07
Т	0.06 ± 0.06
$\Delta \chi^2$	- 4.2

- $M_{KK} \approx 3.2 \, \text{TeV}$ in warped extra dimension models
- $M_V \approx 4 \, \text{TeV}$ in minimal composite Higgs models Freitas & JE, PDG (2018)

Conclusions and outlook

- LHC & low-energy experiments approaching LEP precision in sin²θw
- new players:
 - coherent V-scattering
 - ultra-high precision PVES
 - APV isotope ratios
- at ultra-high precision not only theoretical uncertainties are relevant,
 but also their correlations (hard to estimate)
 - example: vacuum polarization uncertainties enter correlated in an increasing number of quantities

Backups

m_c

- $\alpha(M_Z)$ and $\sin^2\theta_W(0)$: can use PQCD for heavy quark contribution if masses are known.
- g-2: c quark contribution to muon g-2 similar to $\gamma \times \gamma$; \pm 70 MeV uncertainty in m_c induces an error of \pm 1.6 \times 10⁻¹⁰ comparable to the projected errors for the FNAL and J-PARC experiments.
- Yukawa coupling mass relation (in single Higgs doublet SM): $\Delta m_b = \pm 9$ MeV and $\Delta m_c = \pm 8$ MeV to match precision from HiggsBRs @ FCC-ee
- QCD sum rule: m_c = 1272 ± 8 MeV Masjuan, Spiesberger & JE, EPJC 77 (2017) (expect about twice the error for m_b)

Effective couplings

m_t measurements

	central	statistical	systematic	total
Tevatron	174.30	0.35	0.54	0.64
ATLAS	172.51	0.27	0.42	0.50
CMS	172.43	0.13	0.46	0.48
CMS Run 2	172.25	0.08	0.62	0.63
grand average	172.74	0.11	0.31	0.33

JE, EPJC 75 (2015)

- $m_t = 172.74 \pm 0.25_{uncorr.} \pm 0.21_{corr.} \pm 0.32_{QCD} \text{ GeV} = 172.74 \pm 0.46 \text{ GeV}$
- somewhat larger shifts and smaller errors conceivable in the future Butenschoen et al., PRL 117 (2016); Andreassen & Schwartz, JHEP 10 (2017)
- 2.8 σ discrepancy between lepton + jet channels from DØ and CMS Run 2
- indirectly from EW fit: $m_t = 176.4 \pm 1.8 \text{ GeV} (2 \text{ G})$ Freitas & JE (PDG 2018)

Features of our approach

- only experimental input: electronic widths of J/ ψ and $\psi(2S)$
- continuum contribution from self-consistency between sum rules
- include M₀ →
 stronger (milder) sensitivity
 to continuum (m_c)
- quark-hadron duality needed only in finite region (not locally)

 $\overline{m}_c(\overline{m}_c) = 1272 \pm 8 + 2616 \left[\overline{\alpha}_s(M_Z) - 0.1182 \right] \text{ MeV}$ Masjuan, Spiesberger & JE, EPJC 77 (2017)

$\sin^2\theta_W(0)$: flavor separation

strange quark external current	ambiguous external current
Ф	$K\overline{K}$ (non – Φ)
KKπ [almost saturated by Φ(1680)]	KK2π, KK3π
ηΦ	ΚΚη, ΚΚω

- use of result for $\alpha(2 \text{ GeV})$ also needs isolation of strange contribution $\Delta_s \alpha$
- left column assignment assumes OZI rule
- expect right column to originate mostly from strange current $(m_s > m_{u,d})$
- quantify expectation using averaged $\Delta_s(g_{\mu}-2)$ from lattices as Bayesian prior RBC/UKQCD, JHEP 04 (2016); HPQCD, PRD 89 (2014)
- $\Delta_s \alpha (1.8 \text{ GeV}) = (7.09 \pm 0.32) \times 10^{-4} \text{ (threshold mass } \overline{m}_s = 342 \text{ MeV} \approx \overline{m}_s^{\text{disc}})$

$\sin^2\theta_W(0)$: singlet separation

Ferro-Hernández & JE, JHEP 03 (2018) adapted from lattice g_{μ} –2 calculation RBC/UKQCD, PRL 116 (2016)

- use of result for $\alpha(2 \text{ GeV})$ needs singlet piece isolation $\Delta_{\text{disc}} \alpha(2 \text{ GeV})$
- then $\Delta_{\text{disc}} \overline{S}^2 = (\overline{S}^2 \pm 1/20) \Delta_{\text{disc}} \alpha(2 \text{ GeV}) = (-6 \pm 3) \times 10^{-6}$
- step function \Rightarrow singlet threshold mass $\overline{m}_s^{disc} \approx 350 \text{ MeV}$

S fit

- S parameter rules out QCD-like technicolor models
- S also constrains extra <u>degenerate</u> fermion families:
 - \rightarrow N_F = 2.75 ± 0.14 (assuming T = U = 0)
 - compare with $N_v = 2.991 \pm 0.007$ from Γ_Z

STU fit

$sin^2\theta_W(M_Z)$	0.23113 ± 0.00014
$\alpha_s(M_z)$	0.1189 ± 0.0016

S	0.02 ± 0.10	1.00	0.92	-0.66
Т	0.07 ± 0.12	0.92	1.00	-0.86
U	0.00 ± 0.09	-0.66	-0.86	1.00

- $\blacksquare \ M_{KK} \gtrsim 3.2 \, \text{TeV in warped extra dimension models}$
- $M_V \approx 4 \, \text{TeV}$ in minimal composite Higgs models Freitas & JE (PDG 2018)