ALICE overview

highlights from Run 1 & 2

upgrades for Run 3

Jochen Klein¹ for the ALICE Collaboration

¹INFN e Università di Torino

LHCP 2019 Puebla (Mexico) May 20 - 25, 2019

high density/temperature QCD

heavy ions to produce hot and dense QCD matter → exp. access to non-perturbative QCD features

particle production

- integrated particle yields
- recombination/coalescence
- dielectrons

medium evolution

- radial flow
- azimuthal anisotropy

medium interaction

- quenching
- jet modification

understand evolution of bulk matter and interaction of hard probes

ALICE overview

datasets from Run 1 & 2

Run 2 data taking concluded

system	$\sqrt{s_{\rm NN}}$ (TeV)	$L_{ m int}$
рр	0.9	$\sim 200~\mu { m b}^{-1}$
	2.76	$\sim 100~{ m nb}^{-1}$
	5.02	$\sim 1.3~{ m pb}^{-1}$
	7	$\sim 1.5~{ m pb}^{-1}$
	8	$\sim 2.5~{ m pb}^{-1}$
	13	$\sim 25~{ m pb}^{-1}$
p–Pb	5.02	$\sim 15 + 3 { m ~nb^{-1}}$
	8.16	$\sim 25~{ m nb}^{-1}$
Xe–Xe	5.44	\sim 0.3 $\mu { m b}^{-1}$
Pb–Pb	2.76	$\sim 75~\mu { m b}^{-1}$
	5.02	$\sim 0.25 + 1~{\rm nb}^{-1}$

system and energy dependence at LHC

Jochen Klein (INFN)

ALICE overview

 fast reconstruction for muon spectrometer and calorimeters synchronuous with data taking

- fully calibrated reconstruction including central barrel done (second pass to be done for improved performance)
- improved data quality w.r.t. 2015 Pb–Pb run (reduced space charge distortions in TPC)

analyses of full run 2 statistics on-going \rightsquigarrow more results for summer conferences

particle production

hadro-chemistry, hadronisation dynamics

particle production

- ▶ particle identification capabilities down to low p_T → integrated particle yields
- fully characterized by thermal model:
 - baryon chemical potential $\beta \simeq 0$
 - temperature $T\simeq 153~{
 m MeV}$
 - volume $V \simeq 7000 \text{ fm}^3$

(for Pb–Pb $\sqrt{s_{\rm NN}}=5.02~{\rm TeV})$

- ► thermodynamic description ↔ microscopic fundamental interactions
- particle ratios as function of multiplicity show smooth evolution from pp to Pb–Pb collisions, transition between different mechanisms?

 \rightarrow C. Jahnke, Thu 11:50

formation of (light) nuclei: (anti-)deuterons

coalescence of nucleons close in phase space:

$$E_{\mathrm{d}} \frac{\mathrm{d}^3 N_{\mathrm{d}}}{\mathrm{d} p_{\mathrm{d}}^3} = B_2 \cdot \left(E_{\mathrm{p}} \frac{\mathrm{d}^3 N_{\mathrm{p}}}{\mathrm{d} p_{\mathrm{p}}^3} \right)^2$$

► *B*₂ vs multiplicity:

- for small systems: weak dependence on N_{ch} (no dependence on p_T)
- for large systems: decrease with source volume
- d/p ratio vs multiplicity:
 - increase for small systems (expected for $d \propto p^2$)
 - roughly constant for large systems (fixed by thermal yield)

 $[arXiv:1902.09290] \rightarrow R. Lea, Wed 10:36$

recombination: Λ_c

- Λ_c composed of udc (heavy quarks produced early in the collision)
- ∧_c/D⁰ increases considerably from pp/p−Pb to Pb−Pb
 → favours recombination from quarks in the medium (instead of primordial production)
- \blacktriangleright similar effect seen for J/ψ

[arXiv:1809.10922] \rightarrow R. Hosokawa, Tue 12:30

Jochen Klein (INFN)

J/ψ polarisation

- non-perturbative formation of J/ψ from $c\bar{c}$
- polarisation sensitive to production mechanism:
 - transverse (LO NRQCD)
 - longitudinal (NLO color singlet model)
- pp results consistent with no polarisation (feed-down from higher charmonium states)
- first measurement of non-polarisation in Pb–Pb probing interaction with and formation from medium
- feed-down fraction changed in Pb–Pb: suggests no polarisation for J/ψ and ψ(2S)

dielectron production

- probe production of various sources:
 - light flavour mesons
 - heavy-flavour mesons
 - thermal radiation
 - photoproduction
- hadronic cocktail describes mee spectrum when accounting for cold nuclear effects

- low-p_T range most sensitive to photo production
 - no excess in 0-40 %
 - 3.7σ excess in 70-90 % (also seen by STAR)

```
\rightarrow S. Lehner, Thu 14:52
```

medium evolution

radial flow, azimuthal anisotropy

radial expansion

- velocity becomes common variable:
 ⇒ mass-dependent hardening of spectra (radial flow)
- analytical model of collective expansion with:
 - $\blacktriangleright\,$ expansion velocity $\beta_{\rm T}$
 - common freeze-out temperature T_{kin}
 - \rightsquigarrow Boltzmann-Gibbs blast-wave model Schnedermann et al., PRC (1993) 48, 2462
- simultaneous fit to π , K, p spectra
- applied to all measured systems in bins of multiplicity/centrality (better agreement in Pb–Pb)

Pł	iys.	Rev.	С	(201	9) 99	, 0249	06
	\rightarrow	N. Ja	ca	zio, '	Wed	11:55	

radial expansion

- velocity becomes common variable:
 ⇒ mass-dependent hardening of spectra (radial flow)
 - analytical model of collective expansion with:
 - \blacktriangleright expansion velocity $\beta_{\rm T}$
 - common freeze-out temperature $\mathcal{T}_{\mathrm{kin}}$
 - → Boltzmann-Gibbs blast-wave model Schnedermann et al., PRC (1993) 48, 2462
 - simultaneous fit to π , K, p spectra
- applied to all measured systems in bins of multiplicity/centrality (better agreement in Pb–Pb)

Phys. Rev. C (2019) 99, 024906 \rightarrow N. Jacazio, Wed 11:55

anisotropic expansion

quantify azimuthal anistropy by Fourier coefficients:

- v₂ mostly driven by overlap geometry
- higher orders mostly driven by fluctuations (odd harmonics non-existent in average geometry)
- compare different systems using multiplicity as scaling variable
 - finite v_n in pp:
 - similar values as peripheral Pb–Pb/Xe–Xe
 - different geometry at given multiplicity:
 - ightarrow v2 does not scale with multiplicity

J/ψ anisotropy 2 Pb-Pb | s_{NN} = 5.02 TeV 0-10% 10-30% 30-50% Inclusive J/ψ, 2.5<y<4.0, ALICE Prompt D⁰, |y|<1.0, CMS h[±], |η|<0.8, ALICE 0. Š 0.05 -0.0 ^{3 10 12} ρ_τ (GeV/c) 10 12 10 12 6 8 2 4 6 8 2 4 6 8 р_т (GeV/*c*) p_ (GeV/c)

- J/ ψ flows \Rightarrow coupling to medium (consistent with recombination)
- ordering: $v_2(J/\psi) < v_2(D^0) < v_2(h^{\pm})$
- ▶ v_3/v_2 significantly smaller for J/ψ

Jochen Klein (INFN)

ALICE overview

- J/ψ flows \Rightarrow coupling to medium (consistent with recombination)
- ordering: $v_2(J/\psi) < v_2(D^0) < v_2(h^{\pm})$
- ▶ v_3/v_2 significantly smaller for J/ψ

[arXiv:1811.12727] \rightarrow R. Hosokawa, Tue 12:30

Jochen Klein (INFN)

ALICE overview

↑ anisotropy – Pb–Pb 2018!

- ► first measurement of v₂ for ↑: consistent with 0 first particle measured not to have flow!
- not dragged along by flow of medium, not produced by recombination

D^0 anisotropy

- D^0 mesons exhibit $v_2 > 0$
- classificy events according to flow for charged hadrons
 - ▶ 60 % small q_2 : $v_2(D^0)$ reduced
 - > 20 % large q_2 : $v_2(D^0)$ increased
- v₂(D⁰) follows selection
 → originates from same underlying ellipticity

[arXiv:1809.09371] \rightarrow R. Hosokawa, Wed 12:30

medium interaction

energy loss, quenching, jet evolution

energy loss (identified particles)

 compare Pb–Pb collision with incoherent pp superposition

$${\it R}_{
m AA} = rac{{
m d} {\it N}^{
m AA}/{
m d} {\it p}_{
m T}}{\langle {\it N}_{
m coll}
angle ~{
m d} {\it N}^{
m pp}/{
m d} {\it p}_{
m T}}$$

 significant suppression w.r.t. pp, hint of ordering:

- charged hadrons
- D mesons
- ► D_s

• b
$$(
ightarrow c)
ightarrow \epsilon$$

- $\land \land_c$
- nesons

 described by models implementing mass-dependent energy loss and recombination (for Λ_c)

 \rightarrow R. Hosokawa, Wed 12:30

energy loss (jets)

- also jets are strongly suppressed in medium
- excellent tool to study medium interaction

look in more detail than just suppression ~> fragmentation and substructure

Jochen Klein (INFN)

ALICE overview

jet fragmentation

- reconstruct j_T substructure of jets using leading charged particle as proxy
- substract background (using η gap)
- distribution described by two compone
 - hadronization
 - ightarrow narrow component
 - showering
 - \rightarrow wide component
- narrow component depends weakly on p_T
 w universality of hadronization
- wide component increases with $p_{\rm T}$ \rightsquigarrow increase in splitting

[arXiv:1811.09742] \rightarrow M. Fasel, Wed 12:24

Jochen Klein (INFN)

jet fragmentation

- reconstruct j_T substructure of jets using leading charged particle as proxy
- substract background (using η gap)
- distribution described by two compone
 - hadronization
 - \rightarrow narrow component
 - showering
 - \rightarrow wide component
 - narrow component depends weakly on $p_{\rm T}$ \rightsquigarrow universality of hadronization
- wide component increases with $p_{\rm T}$ \rightsquigarrow increase in splitting

 $[arXiv:1811.09742] \rightarrow M. Fasel, Wed 12:24$

p,

p,

jet substructure

grooming procedure

- recluster jet (using C/A algorithm)
- remove softer branch until

$$z_g = rac{\min\left(p_{\mathrm{T}}^1, p_{\mathrm{T}}^2
ight)}{p_{\mathrm{T}}^1 + p_{\mathrm{T}}^2} > z_{\mathrm{cut}}$$

- to identify hard splittings
- no $p_{\rm T}$ dependence (for large R)
- ▶ no *R* dependence (for large p_{T}^{jet})
- in line with expectation
 - *z_g* maps splitting function
 - hadronisation effects small at high $p_{\rm T}$

\rightarrow M. Fasel, Wed 12:24

jet substructure

ALICE

grooming procedure

- recluster jet (using C/A algorithm)
- remove softer branch until

$$z_g = rac{\min\left(p_{\mathrm{T}}^1, p_{\mathrm{T}}^2
ight)}{p_{\mathrm{T}}^1 + p_{\mathrm{T}}^2} > z_{\mathrm{cut}}$$

to identify hard splittings

- no $p_{\rm T}$ dependence (for large R)
- no *R* dependence (for large $p_{\rm T}^{\rm jet}$)
- in line with expectation
 - *z_g* maps splitting function
 - hadronisation effects small at high $p_{\rm T}$

\rightarrow M. Fasel, Wed 12:24

heavy-flavour jets

• charged anti-kt jets (R = 0.4) containing a D^0

- cross section in good agreement with POWHEG hvq + PYTHIA
- fragmentation function tends to be softer than predicted

 \rightarrow Y. Pachmayer, Mon 18:06

ALICE overview

event-shape and mult. dependence of freeze-out radii

exploit quantum correlations of identical pions:

$$C^{
m QS}(q) = 1 + \lambda \cdot e^{-R_{
m inv} \cdot q}, \ \ q = \sqrt{(p_1 - p_2)^i (p_1 - p_2)_i}$$

to measure freeze-out radius $R_{\rm inv}$

- reach in k_T = ¹/₂ |**p**₁ + **p**₂ | limited by influence of mini-jets
- mitigate by using transverse sphericity to select
 - spherical events ($S_T > 0.7$)
 - jet-like events ($S_T < 0.3$)
- spherical events show weak k_T dependence across multiplicity bins

[arXiv:1901.05518]

$$\rightarrow$$
 G. Simatović, Thu 12:07

hadronic interactions

ALICE

 measure quantum correlation of K⁰_S and K[±] caused by final state interaction via:

 $K_{
m S}^0 K^- \leftrightarrow a_0^-(980)$

- favours interpretation of $a_0(980)$ as tetraquark state
- ► method gives access to more final state interactions, e.g. attractive interaction between proton and Ξ [arXiv:1904.12198]

[arXiv:1809.07899]

coherent J/ψ production – Pb–Pb 2018!

last but first (publication from Pb–Pb run 2018):

select ultra-peripheral events:

 $b > R_{\rm Pb}$

- reconstruct ${\mathrm J}/\psi$, ψ' in $\mu\mu$ channel
- separate production off nucleon and nucleus using p_{T} spectra
- photoproduction off nucleus indicates importance of gluon shadowing

[arXiv:1904.06272] → D. Horak, Fri 15:10

future physics goals

precision measurements of

- heavy flavour and quarkonia
- jets
- Iow-mass dileptons
- light (hyper-)nuclei

 \rightarrow M. Winn, Sat 09:00

LS2 upgrades

objective: operation at high interaction rates (50 kHz of Pb–Pb collisions) \Rightarrow continuous (i.e. untriggered) read-out for core detectors

Jochen Klein (INFN)

ALICE overview

construction & commissioning

TPC

ITS Inner/Outer Barrel

construction & commissioning

iter Barrel

 \rightarrow E. Hellbär, Fri 12:24 Jochen Klein (INFN)

ALICE overview

Puebla, May 2019 28 / 30

- wafer-sized sensors
- on-chip power distribution
- cooling by forced air flow
- significant reduction of material budget

- forward region so far uninstrumented
- FoCal-E: photons and π^0 s
- FoCal-H: photon isolation and jets

 \rightarrow N. Novitzky, Fri 14:48

constrain gluon PDFs at low x

 \rightarrow M. Keil, Fri 11:45

More from ALICE ...

- broad physics programme from pp to Pb–Pb
- analyses using full Run-2 statistics on-going
- upgrades progressing well

new results

- Quarkonia and open heavy-flavour measurements with ALICE (G. Luparello, Tue 11:52)
- Recent results on hard probes in heavy-ion collisions from ALICE and LHCb (R. Hosokawa, Tue 12:30)
- Heavy-flavour jet measurements with ALICE (M. Mazzilli, Tue 15:26)
- Recent results on collective effects and soft particle production in heavy-ion collisions from ALICE (N. Jacazio, Wed 11:55)
- Measurements of jet fragmentation and jet substructure with ALICE (M. Fasel, Wed 12:24)
- Particle production vs. multiplicity in pp collisions with ALICE (C. Jahnke, Thu 11:50)
- Event-shape studies in pp collisions with ALICE (G. Simatović, Thu 12:07)
- Low-mass dielectron measurements in pp, p–Pb, and Pb–Pb collissions with ALICE (S. Lehner, Thu 14:52)
- Recent ALICE results on ultra-peripheral collisions (D. Horak, Fri 15:10)

plenaries

- HF production and spectroscopy (Y. Pachmayer, Mon 18:06)
- Particle production vs. multiplicity, small systems (A. Ortiz, Wed 9:24)
- Probes of hadronization (R. Lea, Wed 10:36)
- Future of heavy-ion and ALICE (M. Winn, Sat 9:00)

performance & upgrades

- Muon spectrometry at forward rapidities with ALICE (M. Marchisone, Mon 14:30)
- Using ML techniques for Data Quality Monitoring in CMS and ALICE (K. Deja, Thu 12:36)
- ALICE LS2 upgrade commissioning and physics projection (J. Norman, Thu 15:42)
- ALICE LS3 upgrade a fully cylcindrical inner tracking system (M. Keil, Fri 11:45)
- The ALICE TPC: optimization of the performance in Run 2 and developments for the future (E. Hellbär, Fri 12:24)
- ALICE Forward Calorimeter (FOCal) detector design and physics reach (N. Novitzky, Fri 14:48)

Backup

ALICE in Run 2

ALICE in Run 3

Forward Interaction Trigger (FIT)

Cherenkov array (T0+)

- installed on both sides of the IP
- excellent timing resolution
- used for triggering
- Scintillator ring (V0+)
 - installed on A-side
 - used for triggering
 - centrality measurement

Time Projection Chamber (TPC)

- operation with Ne-CO₂-N₂: electron drift time ~ 100 μs
- MultiWire Proportional Chambers being replaced with Gas Electron Multipliers to avoid gating grid and allow high rate
- conservative operation limits
 - ▶ IBF < 1 %
 - energy resolution better than 12 % (for ⁵⁵Fe measurements)
- space charge distortions up to 20 cm

→ talk by E. Hellbär

ALICE overview

Inner Tracking System (ITS)

- barrel with 7 (3 + 2 + 2) layers
 distance to beam (innermost layer):
 39 → 23 mm
- $\triangleright \sim 0.38 X_0$ for inner layers
- ALice Plxel DEtector (ALPIDE): monotlithic active pixel sensor, binary read-out
- ► 24'000 chips ~→ 10 m² coverage, 12.5 billion pixels, pointing resolution 5 µm

 \rightsquigarrow talk by J. Norman

Jochen Klein (INFN)

ALICE overview

Inner Tracking System (ITS)

- barrel with 7 (3 + 2 + 2) layers
 distance to beam (innermost layer):
 39 → 23 mm
- \blacktriangleright ~ 0.38 X_0 for inner layers
- ALice Plxel DEtector (ALPIDE): monotlithic active pixel sensor, binary read-out
- 24'000 chips ~ 10 m² coverage, 12.5 billion pixels, pointing resolution 5 μm

Inner Barrel

Outer Barrel

 \rightsquigarrow talk by J. Norman

Jochen Klein (INFN)

ALice Plxel DEtector (ALPIDE)

- charge collection by drift and diffusion
- binary read-out
- detection efficiency above 99 %
- fake rate below $10^{-6}/ev/px$

schematic cross section of pixel of monolithic silicon pixel sensor

Muon Forward Tracker (MFT)

920 silicon pixel sensors (0.4 m²) on 280 ladders of 2 to 5 sensors each

- also based on ALPIDE (same as ITS)
- improved pointing resolution to primary vertex ~> secondary vertexing

 \rightsquigarrow talk by J. Norman

beyond LS2: ITS3

- exploit flexibility of thin silicon (< 50 μ m): \Rightarrow fully cylindrical silicon tracker
- ▶ all electrial connections in chip, cooled by forced air flow
 ⇒ severely reduced material budget
- very close to the beam pipe (*R* = 16 mm): *R*₀ = 18 mm, *R*₁ = 24 mm, *R*₂ = 30 mm

 significant improvement of measurements of low-p_T charmed hadrons and low-mass dielectrons

⇒ reduced multiple scattering, _______improved momentum resolution______

39 / 30

beyond LS2: FoCal

- high-granularity Si-W calorimeter for photons and π⁰
- hadronic calorimeter for photon isolation and jets
- ▶ forward region not instrumented ⇒ "unobstructed" view of interaction point
- strong constraints over large x-range (x < 10⁻² not constrained by DIS)

 \rightsquigarrow talk by N. Novitzky

thermal model

Jochen Klein (INFN)