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high density/temperature QCD

I heavy ions to produce hot and dense QCD matter
→ exp. access to non-perturbative QCD features

I particle production
I integrated particle yields
I recombination/coalescence
I dielectrons

I medium evolution
I radial flow
I azimuthal anisotropy

I medium interaction
I quenching
I jet modification b

understand evolution of bulk matter
and interaction of hard probes
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datasets from Run 1 & 2

I Run 2 data taking concluded

system
√
sNN (TeV) Lint

pp 0.9 ∼ 200 µb−1

2.76 ∼ 100 nb−1

5.02 ∼ 1.3 pb−1

7 ∼ 1.5 pb−1

8 ∼ 2.5 pb−1

13 ∼ 25 pb−1

p–Pb 5.02 ∼ 15 + 3 nb−1

8.16 ∼ 25 nb−1

Xe–Xe 5.44 ∼ 0.3 µb−1

Pb–Pb 2.76 ∼ 75 µb−1

5.02 ∼ 0.25 + 1 nb−1

system and energy dependence at LHC

ALI-PERF-313410

pp

ALI-PERF-313420

Pb–Pb
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Pb–Pb run 2018
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[arXiv:1904.06272]

I fast reconstruction for muon spectrometer and calorimeters
synchronuous with data taking

I fully calibrated reconstruction including central barrel done
(second pass to be done for improved performance)

I improved data quality w.r.t. 2015 Pb–Pb run
(reduced space charge distortions in TPC)

analyses of full run 2 statistics on-going  more results for summer conferences
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particle production
hadro-chemistry, hadronisation dynamics
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particle production

yields normalized to pions
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ALICE

 = 7 TeVspp, 

 = 5.02 TeVNNspPb, 

ALICE Preliminary

 = 13 TeVspp, 

 = 5.02 TeVNNsPbPb, 

 = 5.44 TeVNNsXeXe, 

ALI−PREL−159143

multiplicity

Xe–Xe (new!)

I particle identification capabilities down to low pT
 integrated particle yields

I fully characterized by thermal model:
I baryon chemical potential β ' 0
I temperature T ' 153 MeV
I volume V ' 7000 fm3

(for Pb–Pb
√
sNN = 5.02 TeV)

I thermodynamic description ↔
microscopic fundamental interactions

I particle ratios as function of multiplicity show
smooth evolution from pp to Pb–Pb collisions,
transition between different mechanisms?

→ C. Jahnke, Thu 11:50
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formation of (light) nuclei: (anti-)deuterons
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 = 5.02 TeV

NN
sp-Pb, 

V0A Multiplicity Classes (Pb-side)

 = 5.02 TeV
NN
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 = 7 TeVspp, 

 = 13 TeVspp, 

V0M Multiplicity Classes

 = 2.76 TeV (PRC 93 (2015) 024917)
NN

sPb-Pb, 

 = 900 GeV, d/p (PRC 97 (2018) 024615)spp, 

 = 2.76 TeV, d/p (PRC 97 (2018) 024615)spp, 

 = 7 TeV, d/p (PRC 97 (2018) 024615)spp, 
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d/p

I coalescence of nucleons close in phase space:

Ed
d3Nd

dp3
d

= B2 ·
(
Ep

d3Np

dp3
p

)2

I B2 vs multiplicity:
I for small systems: weak dependence on Nch

(no dependence on pT)
I for large systems: decrease with source volume

I d/p ratio vs multiplicity:
I increase for small systems

(expected for d ∝ p2)
I roughly constant for large systems

(fixed by thermal yield)

[arXiv:1902.09290] → R. Lea, Wed 10:36
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recombination: Λc
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Shao-Song, R
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–

Λ
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/
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I Λc composed of udc
(heavy quarks produced early in the collision)

I Λc/D
0 increases considerably from pp/p–Pb to Pb–Pb

→ favours recombination from quarks in the medium (instead of primordial production)

I similar effect seen for J/ψ

[arXiv:1809.10922] → R. Hosokawa, Tue 12:30
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J/ψ polarisation

ALI-DER-314900

helicity Collins-Soper

λθ

λϕ

λθϕ

pp pp Pb–Pb

I non-perturbative formation of J/ψ from cc̄

I polarisation sensitive to production mechanism:
I transverse (LO NRQCD)
I longitudinal (NLO color singlet model)

I pp results consistent with no polarisation
(feed-down from higher charmonium states)

I first measurement of non-polarisation in Pb–Pb
probing interaction with and formation from
medium

I feed-down fraction changed in Pb–Pb:
suggests no polarisation for J/ψ and ψ(2S)
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dielectron production

ALI-PREL-306894

mee

I probe production of various sources:
I light flavour mesons
I heavy-flavour mesons
I thermal radiation
I photoproduction

I hadronic cocktail describes mee spectrum
when accounting for cold nuclear effects

ALI-PREL-315645

pT,ee

I low-pT range most sensitive to
photo production
I no excess in 0-40 %
I 3.7σ excess in 70-90 %

(also seen by STAR)

→ S. Lehner, Thu 14:52
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medium evolution
radial flow, azimuthal anisotropy
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radial expansion
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I velocity becomes common variable:
⇒ mass-dependent hardening of spectra
(radial flow)

I analytical model of collective expansion with:
I expansion velocity βT
I common freeze-out temperature Tkin

 Boltzmann-Gibbs blast-wave model
Schnedermann et al., PRC (1993) 48, 2462

I simultaneous fit to π, K, p spectra

I applied to all measured systems
in bins of multiplicity/centrality
(better agreement in Pb–Pb)

Phys. Rev. C (2019) 99, 024906

→ N. Jacazio, Wed 11:55
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radial expansion

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10

|<
 0.5

η| 〉η
/d

ch
Nd

〈

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
〉

T
β〈

0.02

0.05

0.08

0.11

0.14

0.17

0.2

 (
G

eV
)

ki
n

T

Global Blast-Wave fit to

)c) , p (0.3-3.0 GeV/c) , K (0.2-1.5 GeV/c (0.5-1 GeV/π

ALICE
 = 7 TeVspp, 

 = 5.02 TeVsp-Pb, 
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Tkin − 〈βT〉

I velocity becomes common variable:
⇒ mass-dependent hardening of spectra
(radial flow)

I analytical model of collective expansion with:
I expansion velocity βT
I common freeze-out temperature Tkin

 Boltzmann-Gibbs blast-wave model
Schnedermann et al., PRC (1993) 48, 2462

I simultaneous fit to π, K, p spectra

I applied to all measured systems
in bins of multiplicity/centrality
(better agreement in Pb–Pb)

Phys. Rev. C (2019) 99, 024906

→ N. Jacazio, Wed 11:55
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anisotropic expansion
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I quantify azimuthal anistropy by Fourier coefficients:
v2 v3 v4

. . .

I v2 mostly driven by overlap geometry

I higher orders mostly driven by fluctuations
(odd harmonics non-existent in average geometry)

I compare different systems
using multiplicity as scaling variable
I finite vn in pp:

similar values as peripheral Pb–Pb/Xe–Xe
I different geometry at given multiplicity:
→ v2 does not scale with multiplicity

[arXiv:1903.01790]

→ A. Ortiz, Wed 9:24
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J/ψ anisotropy

v2

v3

I J/ψ flows ⇒ coupling to medium (consistent with recombination)

I ordering: v2(J/ψ) < v2(D0) < v2(h±)

I v3/v2 significantly smaller for J/ψ

[arXiv:1811.12727] → R. Hosokawa, Tue 12:30
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J/ψ anisotropy

v3 (0-50 % integrated)
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I J/ψ flows ⇒ coupling to medium (consistent with recombination)

I ordering: v2(J/ψ) < v2(D0) < v2(h±)

I v3/v2 significantly smaller for J/ψ

[arXiv:1811.12727] → R. Hosokawa, Tue 12:30
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Υ anisotropy – Pb–Pb 2018!
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I first measurement of v2 for Υ: consistent with 0
first particle measured not to have flow!

I not dragged along by flow of medium,
not produced by recombination
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D0 anisotropy
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I D0 mesons exhibit v2 > 0

I classificy events according to
flow for charged hadrons
I 60 % small q2: v2(D0) reduced
I 20 % large q2: v2(D0) increased

I v2(D0) follows selection
 originates from same underlying
ellipticity

[arXiv:1809.09371]

→ R. Hosokawa, Wed 12:30
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medium interaction
energy loss, quenching, jet evolution
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energy loss (identified particles)
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I compare Pb–Pb collision with
incoherent pp superposition
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I significant suppression w.r.t. pp,
hint of ordering:
I charged hadrons
I D mesons
I Ds

I b (→ c) → e (bottom)
I Λc

I described by models implementing
mass-dependent energy loss
and recombination (for Λc)

→ R. Hosokawa, Wed 12:30
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energy loss (jets)
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I also jets are strongly suppressed in medium

I excellent tool to study medium interaction

look in more detail than just suppression
 fragmentation and substructure
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jet fragmentation
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I reconstruct jT substructure of jets
using leading charged particle as proxy

I substract background (using η gap)

I distribution described by two components
I hadronization
→ narrow component

I showering
→ wide component

I narrow component depends weakly on pT
 universality of hadronization

I wide component increases with pT
 increase in splitting

[arXiv:1811.09742]

→ M. Fasel, Wed 12:24
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jet fragmentation
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I reconstruct jT substructure of jets
using leading charged particle as proxy

I substract background (using η gap)

I distribution described by two components
I hadronization
→ narrow component

I showering
→ wide component

I narrow component depends weakly on pT
 universality of hadronization

I wide component increases with pT
 increase in splitting

[arXiv:1811.09742]

→ M. Fasel, Wed 12:24
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jet substructure
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I grooming procedure
I recluster jet (using C/A algorithm)
I remove softer branch until

zg =
min (p1

T, p
2
T)

p1
T + p2

T

> zcut

to identify hard splittings

I no pT dependence (for large R)

I no R dependence (for large pjetT )

I in line with expectation
I zg maps splitting function
I hadronisation effects small at high pT

→ M. Fasel, Wed 12:24
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heavy-flavour jets
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I charged anti-kt jets (R = 0.4) containing a D0

I cross section in good agreement with POWHEG hvq + PYTHIA

I fragmentation function tends to be softer than predicted

→ Y. Pachmayer, Mon 18:06
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event-shape and mult. dependence of freeze-out radii

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

)
q(

Q
S

C

1

1.2

1.4

1.6

1.8

2
c<0.5 GeV/Tk=7 TeV,  0.3<sALICE ,  pp 

 2.2± = 13.9 〉 η/d
ch

N d〈

<0.3TS

  

)c (GeV/q
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

)
q(

Q
S

C

1

1.2

1.4

1.6

1.8

2

 2.3± = 14.9 〉 η/d
ch

N d〈

>0.7TS

Exponential

Gaussian

  

jet-like

spherical

C
Q
S
(q

)
R
in
v
(f
m

)
I exploit quantum correlations of identical pions:

CQS(q) = 1 + λ · e−Rinv·q, q =
√

(p1 − p2)i (p1 − p2)i

to measure freeze-out radius Rinv

I reach in kT = 1
2 |p1 + p2| limited

by influence of mini-jets

I mitigate by using transverse sphericity to select
I spherical events (ST > 0.7)
I jet-like events (ST < 0.3)

I spherical events show weak kT dependence
across multiplicity bins

[arXiv:1901.05518]

→ G. Simatović, Thu 12:07
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hadronic interactions

I measure quantum correlation of K 0
S and K±

caused by final state interaction via:

K 0
SK
− ↔ a−0 (980)

I favours interpretation of a0(980) as tetraquark state

I method gives access to more final state interactions,
e.g. attractive interaction between proton and Ξ
[arXiv:1904.12198]

[arXiv:1809.07899]
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coherent J/ψ production – Pb–Pb 2018!
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last but first (publication from Pb–Pb run 2018):

I select ultra-peripheral events:
b > RPb

I reconstruct J/ψ, ψ′ in µµ channel

I separate production off nucleon and nucleus
using pT spectra

I photoproduction off nucleus
indicates importance of gluon shadowing

[arXiv:1904.06272]

→ D. Horak, Fri 15:10
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future physics goals

I precision measurements of
I heavy flavour and quarkonia
I jets
I low-mass dileptons
I light (hyper-)nuclei

I Run 3/4 to increase Pb–Pb statistics by an order of magnitude

→ M. Winn, Sat 09:00
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LS2 upgrades
objective: operation at high interaction rates (50 kHz of Pb–Pb collisions)

⇒ continuous (i.e. untriggered) read-out for core detectors

Time Projection Chamber

(not to scale)

GEM readout chambers

Muon Forward Tracker

MAPS-based forward tracker

Inner Tracking System

Monolithic Active Pixel Sensors

Forward Interaction Trigger

Cherenkov + scintillator

→ J. Norman, Thu 15:42
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construction & commissioning

TPC

→ E. Hellbär, Fri 12:24

ITS Inner/Outer Barrel

Half-layer 0 Half-Layer 1 Half-Layer 2
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construction & commissioning

TPC

→ E. Hellbär, Fri 12:24

ITS Inner/Outer Barrel

Half-layer 0 Half-Layer 1 Half-Layer 2

first cosmic in inner-most layer

Magnus Mager – IB Commissioning – ITS Plenary 06/05/2019

Cosmic-1
• Taken into account the 

overlaps, we have a (small) 
cross-section for cosmics 
with 3 track-points within 
half-layer 0 

• This is one event from a 
50kHz fake hit rate run 

• … 1 out of 2 million events 
(~40s life time)

 10
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beyond LS2

ITS3

I wafer-sized sensors

I on-chip power distribution

I cooling by forced air flow

I significant reduction of material budget

→ M. Keil, Fri 11:45

FoCal

I forward region so far uninstrumented

I FoCal-E: photons and π0s

I FoCal-H: photon isolation and jets

I constrain gluon PDFs at low x

→ N. Novitzky, Fri 14:48
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More from ALICE . . .
I broad physics programme from pp to Pb–Pb

I analyses using full Run-2 statistics on-going

I upgrades progressing well

new results
I Quarkonia and open heavy-flavour measurements with ALICE

(G. Luparello, Tue 11:52)

I Recent results on hard probes in heavy-ion collisions from ALICE and
LHCb (R. Hosokawa, Tue 12:30)

I Heavy-flavour jet measurements with ALICE (M. Mazzilli, Tue 15:26)

I Recent results on collective effects and soft particle production in
heavy-ion collisions from ALICE (N. Jacazio, Wed 11:55)

I Measurements of jet fragmentation and jet substructure with ALICE
(M. Fasel, Wed 12:24)

I Particle production vs. multiplicity in pp collisions with ALICE
(C. Jahnke, Thu 11:50)

I Event-shape studies in pp collisions with ALICE (G. Simatović,
Thu 12:07)

I Low-mass dielectron measurements in pp, p–Pb, and Pb–Pb collissions
with ALICE (S. Lehner, Thu 14:52)

I Recent ALICE results on ultra-peripheral collisions (D. Horak, Fri 15:10)

plenaries
I HF production and spectroscopy (Y. Pachmayer, Mon 18:06)

I Particle production vs. multiplicity, small systems (A. Ortiz, Wed 9:24)

I Probes of hadronization (R. Lea, Wed 10:36)

I Future of heavy-ion and ALICE (M. Winn, Sat 9:00)

performance & upgrades
I Muon spectrometry at forward rapidities with ALICE (M. Marchisone,

Mon 14:30)

I Using ML techniques for Data Quality Monitoring in CMS and ALICE
(K. Deja, Thu 12:36)

I ALICE LS2 upgrade – commissioning and physics projection (J. Norman,
Thu 15:42)

I ALICE LS3 upgrade – a fully cylcindrical inner tracking system (M. Keil,
Fri 11:45)

I The ALICE TPC: optimization of the performance in Run 2 and
developments for the future (E. Hellbär, Fri 12:24)

I ALICE Forward Calorimeter (FOCal) – detector design and physics reach
(N. Novitzky, Fri 14:48)
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Backup
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ALICE in Run 2
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ALICE in Run 3
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Forward Interaction Trigger (FIT)

I Cherenkov array (T0+)
I installed on both sides of the IP
I excellent timing resolution
I used for triggering

I Scintillator ring (V0+)
I installed on A-side
I used for triggering
I centrality measurement
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Time Projection Chamber (TPC)

I operation with Ne-CO2-N2:
electron drift time ∼ 100 µs

I MultiWire Proportional Chambers being replaced
with Gas Electron Multipliers
to avoid gating grid and allow high rate

I conservative operation limits
I IBF < 1 %
I energy resolution better than 12 %

(for 55Fe measurements)

I space charge distortions up to 20 cm

 talk by E. Hellbär

(not to scale)
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Inner Tracking System (ITS)

I barrel with 7 (3 + 2 + 2) layers

distance to beam (innermost layer):
39→ 23 mm

I ∼ 0.38X0 for inner layers

I ALice PIxel DEtector (ALPIDE):

monotlithic active pixel sensor,
binary read-out

I 24’000 chips  10 m2 coverage,
12.5 billion pixels,
pointing resolution 5 µm

 talk by J. Norman
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ALice PIxel DEtector (ALPIDE)

I charge collection by drift and diffusion

I binary read-out

I detection efficiency above 99 %

I fake rate below 10−6/ev/px
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Muon Forward Tracker (MFT)

1.3 Experimental conditions 3

Absorber!

FIT!

MFT!

ITS Inner Barrel!

ITS Outer Barrel!

Figure 1.1: Layout of the MFT detector in ALICE.

is positioned inside the ITS outer barrel and along the beam axis between the ITS inner barrel
and the front absorber of the MUON spectrometer (see Fig. 1.1).

The basic detection element of the MFT is a silicon pixel sensor, identical to that of the new
ITS [6].

The MFT consists of two half-MFT cones (Fig. 1.1). Each half-MFT cone consists of 5
half-disks positioned along the beam axis, in the direction of the MUON spectrometer (C-side)
at z = �460,�493,�531,�687,�768 mm from the nominal interaction point. The first two
half-disks are identical (called Half-Disk-0 and 1), while the remaining three half-disks are all
di↵erent and are called Half-Disk-2, Half-Disk-3 and Half-Disk-4 respectively. The MFT covers
the pseudo-rapidity acceptance �3.6 < ⌘ < �2.45. In this range, the probability for a particle
to hit at least four disks is greater than 90% if we consider a Gaussian distribution for the
interaction vertex in the z-direction with � ⇡ 60 mm 2 . A half-disk consists of a disk spacer, a
disk support, two printed circuit boards (PCB disks) and the sensor ladders. The sensor ladder
consists of 1, 2, 3, 4 or 5 silicon pixel sensors soldered to a Flex Printed Circuit (FPC) with
aluminium strips. Geometrical parameters of the MFT and of each half-disk are reported in
Tab. 1.2. The positioning of the sensors on the front and back planes of the half-disks is shown
in Fig. 1.2. Special care has been taken in the selection of materials to minimise the material
budget: it amounts to less than 0.6% of a radiation length per disk (Sec. 3.2.2).

1.3 Experimental conditions

The experimental conditions in terms of interaction rates and particle multiplicity, which have
served as a basis for the definition of the detector specifications and simulation of its performance,

2The width of the interaction point in ALICE along the z direction for the 2010 run was 56.1 mm [6].

I also based on ALPIDE (same as ITS)

I improved pointing resolution to primary vertex
 secondary vertexing

 talk by J. Norman
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beyond LS2: ITS3

Beampipe
IR   16 mm
DR  0.5mm 

~14cm

I exploit stitching
⇒ wafer-sized sensors

I exploit flexibility of thin silicon (< 50 µm):
⇒ fully cylindrical silicon tracker

I all electrial connections in chip,
cooled by forced air flow
⇒ severely reduced material budget

I very close to the beam pipe (R = 16 mm):
R0 = 18 mm, R1 = 24 mm, R2 = 30 mm

I significant improvement of measurements
of
low-pT charmed hadrons and low-mass
dielectrons

⇒ reduced multiple scattering,
improved momentum resolution

 talk by M. Keil
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beyond LS2: FoCal
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I high-granularity Si-W calorimeter
for photons and π0

I hadronic calorimeter
for photon isolation and jets

I forward region not instrumented
⇒ “unobstructed” view of interaction point

I strong constraints over large x-range
(x < 10−2 not constrained by DIS)

 talk by N. Novitzky
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