The ambiguity in the identification of THE SCALE ENERGY PARAMETER \tilde{Q}^{2} IN THE PARTON DISTRIBUTION FUNCTIONS

W. Gonzalez ${ }^{(a)}$, S. Rosado-Navarro ${ }^{(b)}$ and A. Rosado ${ }^{(a)}$
${ }^{(a)}$ Instituto de Física LRT
(b) Facultad de Ciencias Físico Matemáticas May, 2019

Abstract

 these energies are expected to be reached at LHeC . We use different assignments for \tilde{Q}^{2}; namely, $Q^{2}, Q^{\prime} 2$ and s. We perform our calculations at NNLO by making use of the Calc-HEP package.

Kinematics

Process $e(p)+p\left(P_{p}\right) \rightarrow e\left(p^{\prime}\right)+Z(k)+X\left(P_{X}\right)$
\boldsymbol{X} stands for anything. As usual, the following invariants are defined for the process:

$$
\begin{aligned}
& s=\left(p+P_{p}\right)^{2}, Q^{2}=-\left(p-p^{\prime}\right)^{2}, \quad \nu=P_{p}\left(p-p^{\prime}\right) \\
& s^{\prime}=\left(p+P_{p}-k\right)^{2}, Q^{2}=-\left(p-p^{\prime}-k\right)^{2} \\
& \nu^{\prime}=P_{p}\left(p-p^{\prime}-k\right)
\end{aligned}
$$

Subprocess

$$
e(p)+p(q) \rightarrow e\left(p^{\prime}\right)+Z(k)+e\left(q^{\prime}\right), \text { with } q^{\mu}=x^{\prime} P_{p}^{\mu}
$$

The following invariants are corresponding for the subprocess:

$$
\begin{aligned}
& \hat{s}=(p+q)^{2}=x^{\prime} s, \\
& \hat{Q}^{2}=-\left(p-p^{\prime}\right)^{2}=Q^{2}, \\
& \hat{\nu}=q\left(p-p^{\prime}\right)=x^{\prime} \nu, \\
& \hat{s}^{\prime}=(p+q-k)^{2}=s^{\prime}-\left(1-x^{\prime}\right) s+2\left(1-x^{\prime}\right)\left(\nu-\nu^{\prime}\right) s, \\
& \hat{Q}^{\prime 2}=-\left(p-p^{\prime}-k\right)^{2}=Q^{\prime 2}, \\
& \hat{\nu}^{\prime}=q\left(p-p^{\prime}-k\right)=x^{\prime} \nu^{\prime} .
\end{aligned}
$$

Problem Statement

Process $\mathrm{e}+\mathrm{P} \rightarrow \mathrm{e}+\mathrm{X}$
Conservation of momentum:

$$
\begin{gathered}
p+q=p^{\prime}+q^{\prime} \\
\left(p^{\prime}-p\right)^{2}=\left(q^{\prime}-q\right)^{2} \\
\text { then } \\
Q^{2}=Q^{\prime 2} \\
Q^{2}=Q^{\prime 2} \doteq \tilde{Q}^{2} \\
\text { Unambiguous }
\end{gathered}
$$

Process $\mathbf{e}+\mathbf{P} \rightarrow \mathbf{e}+\mathbf{Z}^{0}+\mathbf{X}$

> Conservation of momentum:

$$
p+q=p^{\prime}+q^{\prime}+k
$$

Production at lepton line (a and b):
momentum transfer $=Q^{\prime 2}$
Production at quark line (c and d):
momentum transfer $=Q^{2}$
$\tilde{Q}^{2}=Q^{\prime 2} ? \quad \tilde{Q}^{2}=Q^{2}$?
There is ambiguity!

Results

\uparrow Case $\tilde{Q}^{2}=Q^{\prime 2} \quad\left(20\right.$ sessions, $2 x 10^{6}$ calls)

Case: S25
Total Cross Section $1.304 \mathrm{E}+00$ [pb] (3.886E-01\%)
Total Cross Section $1.309 \mathrm{E}+00$ [pb] (5.244E-01\%)
Total Cross Section 1.301E+00 [pb] (4.151E-01\%)
Total Cross Section $1.301 \mathrm{E}+00$ [pb] (3.939E-01\%) Total Cross Section 1.301E+00 [pb] (3.606E-01\%) Total Cross Section $1.300 \mathrm{E}+00$ [pb] (4.078E-01\%) Total Cross Section $1.310 \mathrm{E}+00$ [pb] (6.961E-01\%) Total Cross Section 1.298E+00 [pb] (3.591E-01\%) Total Cross Section 1.299E+00 [pb] (3.649E-01\%) Total Cross Section Mean 1.301E+00 [pb] (1.300E-01\%) or (1.692E-03 [pb])
\longrightarrow Case $\tilde{Q}^{2}=Q^{2} \quad\left(20\right.$ sessions, $2 x 10^{6}$ calls $)$

Case: S14
Total Cross Section $2.367 \mathrm{E}+00$ [pb] (1.972E+01\%) Total Cross Section $2.337 \mathrm{E}+00$ [pb] (1.222E+01\%) Total Cross Section $2.013 \mathrm{E}+00$ [pb] (8.301E+00\%) Total Cross Section $4.131 \mathrm{E}+00$ [pb] (4.845E+01\%) Total Cross Section 1.913E+00 [pb] (4.023E+00\%) Total Cross Section $2.033 \mathrm{E}+00$ [pb] (4.700E+00\%) Total Cross Section $1.915 \mathrm{E}+00$ [pb] (2.904E+00\%) Total Cross Section $1.900 \mathrm{E}+00$ [pb] (2.416E+00\%) Total Cross Section $2.528 \mathrm{E}+00$ [pb] (1.271E+01\%) Total Cross Section $2.026 \mathrm{E}+00$ [pb] ($4.315 \mathrm{E}+00 \%$) Total Cross Section Mean 1.944E+00 [pb] (1.443E+00\%) or (2.806E-2 [pb])
\rightarrow Case $\tilde{Q}^{2}=s \quad\left(20\right.$ sessions, $2 x 10^{6}$ calls $)$
Case: M12
Total Cross Section $2.465 \mathrm{E}+00$ [pb] (1.398E+01\%)
Total Cross Section $1.859 \mathrm{E}+00$ [pb] (1.840E+00\%) Total Cross Section $2.052 \mathrm{E}+00$ [pb] ($9.568 \mathrm{E}+00 \%$) Total Cross Section $2.257 \mathrm{E}+00$ [pb] ($8.150 \mathrm{E}+00 \%$) Total Cross Section $5.092 \mathrm{E}+00$ [pb] (5.895E+01\%) Total Cross Section $2.282 \mathrm{E}+00$ [pb] (1.242E+01\%) Total Cross Section $2.113 \mathrm{E}+00$ [pb] ($6.337 \mathrm{E}+00 \%$) Total Cross Section $2.037 \mathrm{E}+00$ [pb] (4.188E+00\%) Total Cross Section 4.097E+00 [pb] (2.778E+01\%) Total Cross Section $1.759 \mathrm{E}+00$ [pb] (4.731E+00\%) Total Cross Section Mean 1.901E+00 [pb] (1.443E+00\%) or (2.806E-2 [pb])

