

Diboson and triboson CMS measurements North Area

Markus Cristinziani Universität Bonn

LHCP@Puebla, México 20–25 May 2019

Physik bei höchsten Energien mit dem ATLAS-Experiment am LHC

FSP 103

C O 2019

Bundesministerium für Bildung und Forschung

Analyses presented today

Diboson – using 2015–2016 data (36.1 fb⁻¹)

- WW $\rightarrow e^{\pm}\nu\mu^{\mp}\nu$ <u>1905.04242</u>
- WZ → l'vll 1902.05759
- $ZZ \rightarrow \ell\ell\nu\nu$ <u>1905.07163</u>
- 4l inclusive JHEP 04 (2019) 048

Triboson – using 2015–2017 data (79.8 fb⁻¹)

- WWW $\rightarrow \ell \nu \ell \nu \ell \nu, \ell \nu \ell \nu q q 1903.10415$
- WVZ \rightarrow $\ell \nu q q \ell \ell$, $\ell \nu \ell \nu \ell \ell$, $q q \ell \ell \ell \ell$ <u>1903.10415</u>

M. Cristinziani Di- and triboson measurements LHCP 2019 Puebla 24–May–2019

UNIVERSITAT BONN

Cross section

Motivation

test of pQCD, EWK corrections, constrain aTGC/EFT Measured in fiducial volume and extrapolated to total phase space

$$\sigma_{\rm fid} = \frac{N_{\rm data} - N_{\rm bkg}}{\mathcal{L} \cdot C} \qquad \qquad \sigma_{\rm tot} = \frac{N_{\rm data} - N_{\rm bkg}}{\mathcal{L} \cdot C \cdot A}$$

- C corrects for detector inefficiency and resolution
- A is the signal acceptance in the fiducial volume

Differential measurements

- background subtracted kinematic distributions
- corrected from detector effects

UNIVERSITAT

Dibosons: WW

WW→eµvv

Highlights

- investigation of long-standing discrepancies with predictions
- first differential diboson measurement at 13 TeV

Analysis

- eµ final state, veto jet (p_T > 35 GeV) and b-jets
- unfolded differential cross sections in:
 - $o p_T(l_1), p_T(e\mu), m_{e\mu}$
 - $|y_{e\mu}|, \Delta \varphi_{e\mu}, |cos \theta^*| = |tanh(\Delta \eta_{e\mu}/2)|$
- $\sigma(fid.)$ also as function of veto jet p_T
- aTGC limits from unfolded $p_T(l_1)$ in EFT framework

UNIVERSITÄT BONN

WW→eµvv

Fiducial cross section

• compared to MATRIX NNLO

Uncertainties

• 1.3% stat.; 6.7% syst., 2.1% lumi.

 $\sigma_{\text{fid}} = (379.1 \pm 5.0 \text{ (stat)} \pm 25.4 \text{ (syst)} \pm 8.0 \text{ (lumi)}) \text{ fb}$

300

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ $pp \rightarrow e^{\pm} \nu \mu^{\mp} \nu$

Data 2015+2016 379 ± 5 (stat.) ± 27 (syst.) fb

MATRIX NNLO (incl LO $gg \rightarrow WW$) 357 ± 4 (PDF)± 20 (scale) fb

MATRIX NNLO + NLO $gg \rightarrow WW$ $368 \pm 4 (PDF) \pm 20 (scale) fb$

200

(MATRIX NNLO + NLO gg)⊗ NLO EWK 347 ± 4 (PDF) ± 19 (scale) fb

250

350

Integrated fiducial cross-section [fb]

400

UNIVERSITAT

Differential cross section

Parameter	Observed 95% CL [TeV $^{-2}$]	Expected 95% (
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0,3
c_W/Λ^2	[-7.4,4.1]	[-6.4,5
c_B/Λ^2	[-21,18]	[-18,1
$c_{ ilde WWW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1
$c_{ ilde W}/\Lambda^2$	[-76,76]	[-91,9

Dibosons: WZ

$WZ \rightarrow \ell \nu \ell' \ell'$

Selection

- one OSSF 2l compatible with m_z
- m_T^W > 30 GeV

Backgrounds

misid. leptons, ZZ, tt+X

Fiducial cross section

- compared with models
- differential in
 - $p_T(Z), p_T(W), p_T(v), m_T(WZ)$
 - Δφ(W,Z)
 - $o n_{jets}, m_{jj}$ (anti-k_T; R=0.4; p_T > 25 GeV)
 - **y**z **y***ℓ*,w

.AS

ERIMENT

WZ production – polarisation

fo	Measured	SM (NLO QCD)	Significance	E
W	0.26 ± 0.06	0.238 ± 0.003	4.2σ	
Z	0.24 ± 0.24	0.230 ± 0.003	6.5σ	

(a)

(c)

(e)

$ZZ \rightarrow \ell\ell\nu\nu$

Larger BF, larger background than 4l

• high-p_T Z bosons, good sensitivity to TGC

Selection

- no extra leptons or b-tagged jets
- $E_T^{miss} > 110 \text{ GeV}, V_T / S_T^1 > 0.65 + angular req.$

Backgrounds to control

• WZ, Z+jets, other ZZ, VVV, ttV

Differential cross section in

- \circ p_T of leading lepton and leading jet
- $\ell \ell$ system: p_T, |y|, Δφ
- \circ ZZ system: p_T, m_T
- number of jets

M. Cristinziani | Di- and triboson measurements | LHCP 2019 Puebla | 24–May–2019]

UNIVERSITAT BONN

 ${}^{1}S_{T}$ = scalar sum, V_T = vector sum of p_T of leptons and jets

• \	
a atarl	
20100	
	_
· · · /	
	-
///////////////////////////////////////	

		Measured	Predicted
	ee	$12.2 \pm 1.0 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 0.3 \text{ (lumi)}$	11.2 ± 0.6
$\sigma^{\rm fid}_{ZZ \rightarrow \ell \ell \nu \nu}$ [fb]	$\mu\mu$	$13.3 \pm 1.0 \text{ (stat)} \pm 0.5 \text{ (syst)} \pm 0.3 \text{ (lumi)}$	11.2 ± 0.6
	$ee + \mu\mu$	25.4 ± 1.4 (stat) ± 0.9 (syst) ± 0.5 (lumi)	22.4 ± 1.3
σ_{ZZ}^{tot} [pb]	Total	$17.8 \pm 1.0 \text{ (stat)} \pm 0.7 \text{ (syst)} \pm 0.4 \text{ (lumi)}$	15.7 ± 0.7
ΔΤΙΔ	C +	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Four leptons

Inclusive final state of 4l

behaviour of full m(4l) spectrum

Irreducible background

- continuum beneath the Higgs peak
- peak at Z mass from (c)

Four leptons

- Unfolded distributions, double differential in $p_T(4l)$, $|y_{4l}|$, and l flavour
- Extracted $Z \rightarrow 4\ell$ total cross section

M. Cristinziani Di- and triboson measurements LHCP 2019 Puebla 24–May–2019

UNIVERSITAT BONN

Possible BSM Higgs couplings to top or gluons • Measured at $m_{4\ell}$ > 180 GeV, where c_t and c_g decouple¹

Tribosons

Evidence for massive triboson production

Inclusive analysis on 2015–2017 data

- targeting WWW (2l, 3l) and WVV with Z boson(s) (3l, 4l) off-shell production via V/H treated as part of the signal definition

WWW selection

- ℓνℓνqq: same-sign dilepton, split according to flavour (ee, eµ, µe, µµ)
- lvlvlv: trilepton selection, one channel

WWZ and WZZ selection: require one Z candidate

- 3l: split in 1, 2, \geq 3 jets
- 4l: split in DF, SF-on-shell, SF-off shell

M. Cristinziani Di- and triboson measurements LHCP 2019 Puebla 24–May–2019

WWW – "fake" lepton background

Misreconstructed $j \rightarrow l$

• dominated by tt

Data-driven estimation

- introduce "fake" lepton definition
- regions, but: 1 b-tag (tt-enriched)

Misreconstructed $\gamma \rightarrow e$

Vγjj (mostly V=W) important in 2ℓ

Data-driven estimation

- introduce "photon-like" electrons e_ν
- correction factors from $\mu\mu e$ and $\mu\mu e_{\nu}$

UNIVERSITAT

apply correction factors to N+(N)+F events determined in region as 2l and 3l signal

Lepton defintion	Quality	Minimum p_{T}	Isolation	Maximum $ d_0 /\sigma_{d_0}$	Maximum $ z_0 \sin \theta $	n.p. BD
Nominal e Nominal μ WWW Nominal μ WVZ	Tight Medium Loose	15 GeV	Fix (Loose) Gradient FixCutLoose	5 3 3	0.5 mm	yes
Loose e Loose μ	Loose	15 GeV	no	5 3	0.5 mm	no
Veto <i>e</i> Veto µ	Loose Loose and $ \eta < 2.7$	7 GeV	no	no	no	no
Fake <i>e</i> Fake µ	Medium not Tight Not nominal WWW	15 GeV	no	5 10	0.5 mm	no
Photon-like <i>e</i>	Defined a	as for nomina	l, but no hit in fir	st pixel layer		no

WWW – validation regions

WZ validation region

- 3l, one SFOS lepton pair
- no b-tag, E_T^{miss} > 55 GeV
- m_{eee} > 110 GeV

UNIVERSITÄT BONN

W-sideband region 2l region with |m_{jj} – 85 GeV| > 20 GeV

WWW – Pre-fit inputs

M. Cristinziani Di- and triboson measurements LHCP 2019 Puebla 24–May–2019

WVZ – analysis strategy

- Backgrounds mostly prompt
- Mainly diboson • WZ in 3l and ZZ in 4l
- All backgrounds from MC
- Build a BDT for each of the six signal regions trained against diboson
- Input variables
 - \circ invariant mass, p_T , ...
 - 12–15 variables in 3ℓ regions
 - 6 variables in 4*l* regions

UNIVERSITAT BONN

WVZ – background modelling

WZ and Z+jets validation

- validation region as 3l-1j SR
- but: no H_T cut; $m_{\ell\ell\ell} < 150$ GeV

UNIVERSITÄT <mark>BONN</mark>

ttZ control region

- defined as region as 3l-3j SR
- but: no H_T cut; ≥ 4jets; ≥ 2 b-tags

WVZ – Prefit inputs

UNIVERSITÄT BONN

WVV – signal extraction

Binned profile likelihood

- simultaneous fit to 11 SRs + 1 CR
- one µwvv assumed for WWW and WVZ
- 186 bins in total

Correlated systematics

- experimental
- irreducible background (theory)
 - signal shape (scale variations)
 - diboson normalisation (constrained to ~5%)
 - diboson shape (Sherpa vs Powheg; scale variations)
- other backgrounds have small impact

Uncorrelated systematics

• data-driven in WWW vs MC in WVZ

WVV – fit results

Expected

• $\mu_{WVV} = 1.00 \pm 0.24 (stat.) +0.27 (syst.)$

Measured

• $\mu_{WVV} = 1.38 + 0.25 (stat.) + 0.30 (syst.)$

Evidence for 3 massive bosons • exclusion of bckgnd-only hypothesis

	ATLAS		√s = 1	3 TeV	, 79.8 fb⁻
	tot.		Combined		
	stat.	_ =	Comb. tot.	tot	stat
WWW 2 <i>l</i>		<mark>⊬⊷⊶</mark>	μ = 2.24	+0.62 -0.57	+0.39 -0.38
WWW 3l	⊢ ∎-1		μ = 0.47	+0.54 -0.47	+0.49 -0.44
WVZ 3ℓ	⊨⊷⊷		μ = -0.10	+0.96 –0.93	+0.49 -0.47
WVZ 4ℓ		1	μ = 2.44	+0.92 -0.83	+0.83 -0.75
Combined	••••••	• 1	μ = 1.38	+0.39 -0.37	+0.25 -0.24
	0	2	4	6	8
				μ =	σ ^{VVV} /σ ^{VVV} SM

YATLAS

Decay channel	Significance		
	Observed	Expecte	
WWW combined	3.3σ	2.4σ	
$WWW \rightarrow \ell \nu \ell \nu q q$	4.3σ	1.7σ	
$WWW \rightarrow \ell \nu \ell \nu \ell \nu$	1.0σ	2.0σ	
WVZ combined	2.9σ	2.0σ	
$WVZ \rightarrow \ell \nu q q \ell \ell$	-	1.0σ	
$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / q q \ell \ell \ell \ell$	3.50	1.8σ	
VVV combined	4.0σ	3.1 <i>o</i>	

Visualising the evidence

ΜΕΝΊ

BDT respons

M. Cristinziani Di- and triboson measurements LHCP 2019 Puebla 24–May–2019

UNIVERSITÄT BONN

Conclusions

Dibosons

- several 13 TeV results
- fiducial & differential
- extracted aTGC/EFT limits and polarisation

Tribosons

- first evidence (4σ) for three massive bosons
- window to QGC

• poster at this conference

M. Cristinziani Di- and triboson measurements LHCP 2019 Puebla 24–May–2019

