

# **Searches for Hadronic Resonances at CMS**

David Yu | Brown University LHCP 2019, Puebla, Mexico May 21, 2019

### Hadronic Resonance Searches

# Hadronic resonance searches: a long history



Search for bumps in the m<sub>jj</sub> spectrum on top of smooth QCD background.

### Hadronic Resonance Searches

# Hadronic resonance searches: a long history



Search for bumps in the m<sub>jj</sub> spectrum on top of smooth QCD background.

### But only one observation!

David Yu (Brown University)

### Hadronic Resonance Searches

# Hadronic resonance searches: a long history



Search for bumps in the m<sub>jj</sub> spectrum on top of smooth QCD background.

1990: observation of  $W/Z \rightarrow qq$  by UA2

David Yu (Brown University)

### Searches @LHC

### Hadronic resonance searches remain a promising discovery mode for many models of new physics



# Leptophobic Z' model

For comparison of results, introduce a common simplified model, **leptophobic vector** Z', with uniform quark coupling  $g_q$ :

$$\mathcal{L}_{\rm V} = g_q \sum_{q=u,d,s,c,b,t} Z'_{\mu} \bar{q} \gamma^{\mu} q$$

• Simple scaling:  $\sigma \propto g_q^2$ .



#### 1 High mass dijets

2 Low mass dijets

3 Very low mass dijets

#### 4 Beyond dijets





# Dijet event with the 2nd largest invariant mass in 2017

CMS Experiment at LHC, CERN Data recorded: Mon Aug 7 06:49:37 2017 EEST Run/Event: 300575 / 65453124 Lumi section: 39 Dijet Mass: 7.9 TeV



# High mass dijets

#### **Dijet search ingredients**

- Trigger on high-*p*<sub>T</sub> jets.
- Form jets from particle flow candidates (anti- $k_{\rm T}$  algorithm, R = 0.4).
  - ► Choose 2 with highest *p*<sub>T</sub>.
  - Combine subleading jets within  $\Delta R < 1.1$ .
- Cut on angular separation:  $|\eta_1 - \eta_2| < 1.1.$
- Estimate background with fit or  $\Delta \eta$  sideband.



# High mass dijets: background estimation

#### Fit method

- Lower  $m_{jj}$ : fit background with empirical, smoothly falling function.
- Optimize function choice with statistical tests.

$$\frac{d\sigma}{dm_{jj}} = \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\ln(x)}}, \ x = \frac{m_{jj}}{\sqrt{s}}$$



#### Sideband method

- New for 2017: background shape from |∆η| > 1.1 events + MC transfer factor.
- Fewer degrees of freedom than fit method.



## High mass dijets: results



- No significant excesses observed; limits set on qq, qg, and gg signals.
  - Largest excess near  $m_{jj} \sim$  4 TeV, local sig. 1.9 $\sigma$  (qq).
- Two highest mass events at 7.9 TeV and 8 TeV.

#### Detailed limits in backup.

# High mass dijets: constraints on Z' model



- High mass dijet search spans 1.8 TeV 8 TeV.
- Trigger-level events ("scouting") extend down to 450 GeV.
- b-tagged triggers extend down to 325 GeV.

## High mass dijets: constraints on Z' model



- High mass dijet search spans 1.8 TeV 8 TeV.
- Trigger-level events ("scouting") extends down to 450 GeV.
- b-tagged triggers extend down to 325 GeV.

### How do we probe resonances below 325 GeV?

David Yu (Brown University)



#### 2 Low mass dijets

3 Very low mass dijets

#### 4 Beyond dijets

# Triggering on dijets

- $m_{jj}$  range for dijet search limited by trigger.
- Solution: require significant ISR; resonance boosted into a single jet.
- Trigger on AK8 jets with large mass and *p*<sub>T</sub>.
- Efficient for  $p_{\rm T} >$  525 GeV (AK8), 575 GeV (CA15).







- Significant initial state radiation can overcome trigger limitation.
- Boosted dijet system (*p*<sub>T</sub> > 525 GeV) reconstructed as a single wide jet (anti-*k*<sub>T</sub>, *R* = 0.8 or CA, *R* = 1.5).
- Signal jets have 2-pronged substructure.
- Scan jet mass distribution for bumps (coarse p<sub>T</sub> categories from 525 GeV - 1500 GeV).



 Add wider jets (CA15) to extend sensitivity to m<sub>Z'</sub> = 450 GeV.

0 15

0.1

0.05

 $\rho = \ln(m_{2}^{2}/p_{T}^{2})$ 

# Z'+ISR jet: method

- Substructure algorithms distinguish
   2-pronged signal from QCD background:
  - ► pileup-per-particle identification (PUPPI),
  - soft drop jet mass,
  - energy correlation functions  $(N_2^{1,\text{DDT}})$ .

#### **Background estimation**

- QCD background from events failing decorrelated tagger.
- Shape modulated by data-vs-MC polynomial "transfer factor."
- Calibration in situ using *W*/*Z* peak.



(a) AK8

(GeV) d

800

700

600

500

CMS Simulation Preliminary

Multijet events



(b) CA15

See substructure talks from C. Pollard, Z. Kang, D. Miller.

#### EXO-18-012

# Z'+ISR jet: results



- Limits set on  $\sigma(pp \to Z' \to qq)$ ,  $g_q$ , and  $m_{\rm DM}$  vs  $m_{\rm med}$ .
- No excess at  $m_{Z'} = 115$  GeV in 2017 data.
- With CA15 jets, extend coverage to 50 GeV 450 GeV.





#### Dijet+ISR jet probes down to $m_R = 50$ GeV.



Dijet+ISR jet probes down to  $m_R = 50$  GeV.

#### Can we go even lower?



#### 2 Low mass dijets

3 Very low mass dijets

#### 4 Beyond dijets



- Jet triggers limited to  $p_{\rm T} \gtrsim$  500 GeV, hence  $m_{jj} \gtrsim$  50 GeV.
- Even lower resonance masses: use photon triggers.
  - ▶ 2016:  $p_{\mathrm{T}}^{\gamma} >$  175 GeV.
- Require photon with  $p_{\rm T}$  > 200 GeV and  $|\eta| < 2.1$ .
- Otherwise, analysis is very similar to Z'+ISR jet.
  - $N_2^{1,\mathrm{DDT}}$  set to 10% background efficiency.



140 160

AK8 Jet Soft Drop Mass (GeV/c2)

### Z'+ISR photon: results



• Probe Z' masses down to  $m_{Z'} = 10 \text{ GeV}!$ 

■ No significant excesses; limits set from 10 GeV - 125 GeV.

# Z' summary



#### CMS dijet limits span 10 GeV – 8000 GeV.

Note:  $\Gamma_{Z'}/M_{Z'}$  cutoffs are model dependent.

David Yu (Brown University)

#### 1 High mass dijets

2 Low mass dijets

3 Very low mass dijets

#### 4 Beyond dijets

## Beyond dijets



#### Where do we go from here?

## Beyond dijets



Future luminosity gains will be slow:  $g_q^{95\%\,{
m CL}}\sim {\cal L}^{1/4}$  :( How about flavor tagging?

# Flavor-tagged resonances

- Boosted scalar to bb, using Z'(qq)+ISR techniques + dedicated double b-tagging.
- Inspired by boosted  $H \rightarrow bb$ .
- 50 GeV  $< m_{\Phi} < 2m_t$ .





- $t\bar{t}$  resonance search in 0-, 1-, and 2- $\ell$  final states.
- $\bullet \ \ 0.5 \, {\rm TeV} < m_X < 7 \, {\rm TeV}.$
- See plenary by J. Ngadiuba for details.

### Conclusion

■ CMS searches for hadronic resonances cover a wide mass range, 10 GeV - 8000 GeV.



- Many techniques developed to span two orders of magnitude of m<sub>ij</sub>:
  - Dijet bump hunting.
  - ► Trigger-level analysis (scouting).
  - Boosted production with substructure.
  - Bottom- and top-tagging.

■ Look forward to the full Run 2 analyses!

#### References

| Short Title           | Paper                          |  |
|-----------------------|--------------------------------|--|
| Dijet 2016+2017       | PAS EXO-17-026                 |  |
| Dijet scouting, 2012  | 1604.08907                     |  |
| Dijet 2016            | 1806.00843                     |  |
| Dijet $\chi$          | 1803.08030                     |  |
| Z'(qq)+jet 2016+2017  | )+jet 2016+2017 PAS EXO-18-012 |  |
| Z'(qq)+jet 2016       | 1710.00159                     |  |
| Z'(qq)+photon         | PAS EXO-17-027                 |  |
| $\Phi(bb)$ +jet       | 1810.11822                     |  |
| $t\bar{t}$ resonances | 1810.05905                     |  |

# Backup

## Coupling conversion

■ Cross section for narrow *s*-channel resonance *R* [1110.5302]:

$$\begin{split} \hat{\sigma}(\sqrt{\hat{s}}) &= \frac{16\pi \mathcal{N}\Gamma_R^2}{(\hat{s} - m_R^2)^2 + m_R^2\Gamma_R^2} \\ r(1+2 \to R) &\approx 16\pi^2 \mathcal{N} \times \text{BR}(R \to 1+2) \times \left[\frac{1}{s}\frac{dL}{d\tau}\right]_{\tau = m_R^2/s} \times \frac{\Gamma_R}{m_R}, \end{split}$$

#### where:

 $\sigma$ 

•  $\Gamma_R \propto g_q^2$  =resonance mass/width, •  $\mathcal{N} = \frac{N_{S_X}}{N_{S_1}N_{S_2}} \frac{C_X}{C_1C_2}$  = spin and color multiplicity factor, •  $\sqrt{s}$  = collision energy, •  $\left[\frac{1}{s}\frac{dL}{d\tau}\right]_{\tau=m_R^2/s}$  = parton luminosity factor, •  $\left((\hat{s} - m_R^2)^2 + m_R^2\Gamma_R^2\right)^{-1} \approx \frac{\pi}{m_R\Gamma_R}\delta(\hat{s} - m_R^2)$ , from narrow width approximation.

$$\Rightarrow$$
 For  $Z'$  model,  
 $\sigma(R) \propto g_q^2$ .

# $\Upsilon/Z$ width constraint

From 1404.3947, constraint on  $(m_{Z'}, g_q)$  space from hadronic Z width (Z' modifies Zqq vertex).

$$\frac{\Delta \Gamma_Z^{\text{had}}}{\Gamma_Z^{\text{had}}} = \frac{2g_q c_Z c_W s_W (2V_u + 3V_d)}{3g(1 - m_{Z'}^2/m_Z^2)(2V_u^2 + 3V_d^2 + 5/16)}$$

where  $V_{u,d} = \pm 1/4 - (3 \pm 1)s_W^2/6$ .

Similarly,  $\Delta R_{\Upsilon} \equiv B(\Upsilon \to Z'^*/\gamma^* \to jj)/B(\Upsilon \to \mu\mu) < 2.1$  gives  $\Upsilon$  indirect constraint.





Dijet Mass: 8 TeV

### High mass dijets: limits



Limits on:

- quark-quark (Z'),
- quark-gluon  $(q^*)$ ,
- gluon-gluon (color octet scalar),
- mixed (RS graviton).

Back

## High mass dijets: significances



# Dijet $\chi$ : angular analysis



■  $dN/d\chi \approx$ constant for QCD background; signal peaks at low  $\chi$ .



### Energy correlation functions

• Energy correlation functions: for  $n_J$  jet constituents with energy fractions  $z_i$ ,

$${}_{1}e_{2}^{\beta} = \sum_{1 \le i < j \le n_{J}} z_{i}z_{j}\Delta R_{ij}^{\beta}$$
$${}_{2}e_{3}^{\beta} = \sum_{1 \le i < j < k \le n_{J}} z_{i}z_{j}z_{k}\min\left\{\Delta R_{ij}^{\beta}\Delta R_{jk}^{\beta}, \Delta R_{jk}^{\beta}\Delta R_{ij}^{\beta}\right\}$$

2-pronged tagger:  $N_2^\beta = {}_2e_3^\beta/({}_1e_2^\beta)^2$ .

## Z'+jet: AK8 distributions



# Z'+jet: CA15 distributions



# Z'+photon: calibration



■ Calibrate jet mass scale, mass resolution, and N<sub>2</sub><sup>1, DDT</sup> efficiency using W bosons from semileptonic tt.

# Boosted $H \rightarrow b\bar{b}$ analysis

- Search for  $H \rightarrow b\bar{b}$  with  $p_{\rm T} > 450$  GeV.
  - Dataset: 35.9 fb<sup>-1</sup>,  $\sqrt{s} = 13$  TeV.
- Same analysis technique as boosted  $\Phi/A \rightarrow b\bar{b}$ .
- Simultaneously constrain  $Z \rightarrow b\bar{b}$ .



|                             | Н                   | H no $p_{\rm T}$ corr. | Z                      |
|-----------------------------|---------------------|------------------------|------------------------|
| Observed signal strength    | $2.3^{+1.8}_{-1.6}$ | $3.2^{+2.2}_{-2.0}$    | $0.78^{+0.23}_{-0.19}$ |
| Expected UL signal strength | < 3.3               | < 4.1                  | _                      |
| Observed UL signal strength | < 5.8               | < 7.2                  | _                      |
| Expected significance       | $0.7\sigma$         | $0.5\sigma$            | $5.8\sigma$            |
| Observed significance       | $1.5\sigma$         | $1.6\sigma$            | $5.1\sigma$            |

### Scalar limits



### Pseudoscalar limits



### Scalar mediator model

- Scalar/pseudoscalar mediator: assume minimal flavor violation to avoid FCNCs.
- ⇒ couplings proportional to SM Higgs Yukawas, *g*<sub>f</sub>*y*<sub>f</sub>. Preferential coupling to third generation fermions.
- For simplicity, take uniform scaling constant,  $g_f = g_{q\Phi/A}$ .







# $Z' \to t \bar{t}$

- Combined search for *tt* resonances in 0, 1, and 2 lepton final states.
- Top tagging: algorithms identify top quarks from QCD background (resolved and boosted).





(b) 0 lepton