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The Search Plan

Physics knowledge drives development of  experiments, simulations, reconstruction, 
and analysis pipeline

• Underlying theory drives our inference goals 
• Mechanistic understanding of  structure of  events, particles interactions with material
• Compositionality: design detectors and algorithms to identify specific particles, and 

analyze them together as events

Much of  this is intractable
• Don’t know p(shower | electron) or p(electron | shower)
• Can sample distributions with simulators encapsulating physics knowledge

Machine learning to augment and improve the pipeline, preserving our physics 
knowledge while by providing expressive and flexible models to study our data

Experiment Data 
Acquisition

Simulation

Object 
Reconstruction

Event Selection Statistical Analysis
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Jet Tagging
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Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely

– 4 –

(a)

−0.2 0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

2

2.2
Boosted W Jet, R = 0.6

η

φ

(b)

(c)

−1.2 −1 −0.8 −0.6 −0.4 −0.2

4.6

4.8

5

5.2

5.4

5.6

5.8
Boosted QCD Jet, R = 0.6

η

φ

(d)

Figure 1: Left: Schematic of the fully hadronic decay sequences in (a) W+W− and (c) dijet QCD
events. Whereas a W jet is typically composed of two distinct lobes of energy, a QCD jet acquires
invariant mass through multiple splittings. Right: Typical event displays for (b) W jets and (d)
QCD jets with invariant mass near mW . The jets are clustered with the anti-kT jet algorithm [31]
using R = 0.6, with the dashed line giving the approximate boundary of the jet. The marker size
for each calorimeter cell is proportional to the logarithm of the particle energies in the cell. The
cells are colored according to how the exclusive kT algorithm divides the cells into two candidate
subjets. The open square indicates the total jet direction and the open circles indicate the two
subjet directions. The discriminating variable τ2/τ1 measures the relative alignment of the jet
energy along the open circles compared to the open square.

with τN ≈ 0 have all their radiation aligned with the candidate subjet directions and

therefore have N (or fewer) subjets. Jets with τN ≫ 0 have a large fraction of their energy

distributed away from the candidate subjet directions and therefore have at least N + 1

subjets. Plots of τ1 and τ2 comparing W jets and QCD jets are shown in Fig. 2.

Less obvious is how best to use τN for identifying boosted W bosons. While one might

naively expect that an event with small τ2 would be more likely to be a W jet, observe that

QCD jet can also have small τ2, as shown in Fig. 2(b). Similarly, though W jets are likely

– 4 –

Boson 
jet

QCD jet

• Can use internal jet (sub)structure of  a jet for classification

• Wealth of  domain expertise in feature engineering

• Can Machine Learning perform this classification?

Boson:
h, W, Z

q

q
QCD:
q, g
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Inductive Bias and Data Representation

Moving inductive bias from feature engineering to machine learning 
(neural network) model design 

• Inductive bias ~ knowledge about the problem
• Feature engineering ~ hand crafted variables
• Model design ~ the data representation and the structure of  the machine 

learning model / network 

Need a good inductive bias, i.e. physical motivation, for data 
representation and model structure

• Better learn to approximate our data
• Easier to extract information about what is learned?

We can represent jets in different ways
We can utilize different classes of  models
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Jets as Images [Based on slides H. Qu]

https://indico.cern.ch/event/766872/contributions/3357992/attachments/1831591/2999672/ParticleNet_IML_20190417_H_Qu.pdf
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Jets as Collections of  Particles [Based on slides H. Qu]

1902.08570

https://indico.cern.ch/event/766872/contributions/3357992/attachments/1831591/2999672/ParticleNet_IML_20190417_H_Qu.pdf
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Jet Tagging with ML

arXiv:1902.09914

Appear to be reach performance asymptote by several models

Key for use in experiments: Understanding computational 
requirements and sensitivity to systematic uncertainties
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Flavour Tagging: Deep Learning in Experimental Action

Finding jets containing long-lived b-hadrons is key to finding H, Z, Top
• Complex decay topology drives need for powerful algorithms
• (Physics driven) Ordering of  set of  tracks / vertices to analyze as a sequence
• Sequence based algorithm to account for long range correlations among tracks!

ATLAS-PHYS-PUB-2017-013 CMS-DP-2018-058
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Enforcing Invariance

With flexibility comes complexity: 
• Hard to control how models learn and utilize information
• Potentially unwanted sensitivity to poorly modeled aspects of  simulation
• Potentially unwanted sculpting of  key physics distributions like mass

Idea: Augment training of  classifier to enforce invariance to changes 
in a variable Z (nuisance parameter for systematic uncertainty, 
kinematic variables, etc.)
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Adversarial Learning

Adversarial Approach:
• Build loss that encodes performance of  a classifier and and adversary

• Classifier penalized when adversary does well at predicting Z

[arXiv:1611.01046]
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Learning to Pivot: Physics Example

l=0, Z=0
• Standard training with no 

systematics during training, 
evaluate systematics after 
training

l=0
• Training samples include events 

with systematic variations, but 
no adversary used

l=10
• Trading accuracy for robustness 

results in net gain in terms of  
statistical significance

Optimal tradeoff  of  
performance vs. robustness

Non-Adversarial training

[AMS = Estimate of statistical significance including systematic uncertainty]

W-jets vs. QCD-jets
Z = noise level from “pileup”
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Decorrelating Variables

Same adversarial setup can decorrelate a classifier from a chosen 
variable (rather than nuisance parameter) [arXiv:1703.03507]

For example, decorrelate classifier from jet mass, so as not to sculpt jet 
mass distribution with classifier cut

[ATL-PHYS-PUB-2018-014]

W-jets vs. QCD Jets

Better
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Looking for Signals

Machine Learning driven reconstruction techniques allow us to 
improve the identification of  known particle signatures in detectors

Typically combine information from several identified particles to 
search for signals / perform measurements.

When we know what signal we are looking for

• Can rely on standard MC and data driven techniques

What if  we don’t know what signal we are looking for?
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ML Enhanced Resonance Finding with CWola Hunting

Want to look for resonance but be as agnostic as 
possible to features, e.g. if

• We don’t have a theory yet to predict it
• We don’t think MC models its features well

Density ratio trick

• D(x) is discriminator, e.g. ML model
• r(x) is the likelihood ratio

Works even if  classes are not pure signal or 
background, if  signal fractions are different!

• Train on data directly in samples with 
different signal fractions!

• Build mass-independent classifier to not 
sculpt mass distribution

• Apply varying thresholds on classifier
• Bump Hunt!

𝐷 𝑥 =
1

1 + 𝑝(𝑥|𝑦 = 0)𝑝(𝑦 = 0)
𝑝(𝑥|𝑦 = 1)𝑝(𝑦 = 1)

=
1

1 + 1
𝑟(𝑥)

𝑝(𝑦 = 0)
𝑝(𝑦 = 1)

Images from B. Nachman

JHEP 10 (2017) 174
Phys. Rev. Lett. 121, 241803 (2018) 
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Don’t know what to look for? Anomaly Detection Autoencoders
Anomaly detection: find rare events that differ 
from standard or majority data

• Define standard: i.e. Standard Model 
• Anomaly: BSM events not like the SM

Look for BSM events with small SM 
probability, pSM(x) … but don’t know pSM(X)!

(Variational) AutoEncoder
• Latent variable model, latent space z
• Learn encoder p(z|x) and Decoder p(x|z)
• Key Idea: Ability to reconstruct input after 

encoding into latent space should be diminished 
for non-standard (i.e. BSM) data

• Growing literature: 1808.08979, 1808.08992, 
1807.10261, 1811.10276

arXiv:1811.10276

https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/1807.10261
https://arxiv.org/abs/1811.10276
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Resource Constraints

Increased pileup at HL-LHC will push boundaries of  our computational capabilities
• Major challenges in triggering, large scale simulation, and high multiplicity tracking
• New tools and developments in ML may help address some of  these challenges

Simulation
• Accurate but often costly simulation of  particle interactions with material, that

produces sample and not analytic P(energy deposits | particle)
• ML approach: Generative models to learn data distribution, p(x), and produce 

samples?

Trigger
• High performance algorithms early in trigger to reduce backgrounds for key signals?
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Deep Generative Models for Simulation: GANS

Generative Adversarial Network

Generator produces images from random noise and tries to trick discriminator into 
thinking they are real

Classifier tries to tell the difference between real and fake images  

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?

Images: arXiv:1710.10196

arXiv:1406.2661
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GANs / VAEs Generating Jet-images, and 3D calo-clusters

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?
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arXiv:1705.02355
arXiv:1701.05927

ATL-SOFT-PUB-2018-001

ATLAS-SIM-2019-004

A. Maevskiy on behalf of LHCb [slides]

https://indico.cern.ch/event/766872/contributions/3357986/attachments/1831265/2999042/FASTSIM-at-IML-v1.pdf
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Fast Data Acquisition with ML on FPGA with HLS4ML

FPGAs are high speed, low power, and highly parallelizable
Dedicated SW needed to efficiently and effectively port ML algorithms to FPGA 

Tuning resource usage, data precision, and model pruning needed to hit timing needs

Example: Boosted jet tagging

Images from J. Ngadiuba
arXiv:1804.06913

FPGA Diagram

https://indico.cern.ch/event/708041/contributions/3269690/attachments/1809703/2955081/hls4ml_ACAT2019_Ngadiuba.pdf
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Conclusion

The structure of  analysis pipeline is grounded in our detail physics 
domain knowledge

We can maintain our physics knowledge embedded in this pipeline 
while utilizing ML to help solve some of  the intractable challenges

ML methods have shown strong performance improvements in 
reconstruction, and techniques to deal with key experimental 
challenges such as computational feasibility and systematic uncertainty 
mitigation are under study

New ideas in data driven search strategies, fast simulation, and 
triggering with ML may help expand the scope of  our searches!
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Backup
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Reconstructing and Tagging Particles

Jet identification = 
Classification 

Energy estimation = 
Inference, Regression

𝑝 𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑗𝑒𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

𝑝 𝐸89:;
<;8 𝑗𝑒𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)

• Jet: stream of  particles 
produced by high energy 
quarks and gluons
– Clustering algorithms used to 

find them
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Reconstructing and Tagging Particles

Calorimeter:
Stops particle and
destructively measure
energy / direction

Tracking detector:
Typically Si-pixel detector
Non-destructive space-point
measurement

Particle identification = 
Classification 

Energy estimation = 
Inference, Regression

p(electron | data)

p(Eelectron

true

| electron data)
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Adversarial Networks

Classifier built to solve problem at hand

[arXiv:1611.01046]
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Adversarial Networks

Systematic uncertainty encoded as nuisance parameters, Z

Adversary to predict the value of  Z given classifier output

[arXiv:1611.01046]
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Adversarial Networks

Loss encodes performance of  classifier and adversary
• Classifier penalized when adversary does well at predicting Z

Hyper-parameter l controls trade-off

• Large l enforces f(…) to be pivotal, e.g. robust to nuisance
• Small l allows f(…) to be more optimal

[arXiv:1611.01046]
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Learning to Pivot: Toy Example

Without adversary (top) 
large variations in network 
output with nuisance 
parameter

With adversary (bottom) 
performance is independent!

2D example
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Deep Generative Models for Simulation

Quickly growing literature
• 1701.05927 1705.02355, 
• 1807.01954
• ATL-SOFT-PUB-2018-001,

ATLAS-SIM-2019-004
• Slides from G Khattak, F. 

Carminati, S. Vallecorsa
• Slides from A. Maevskiy, et. 

al. on behalf  of  LHCb
• Slides from T. Ferber for 

Belle II
• Slides from V. Belavin

Generator
CNN

Discriminator
CNN

Random
Noise

“Real” data

Real or Fake?

ATLAS-SIM-2019-004

A. Maevskiy on behalf of LHCb

https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1807.01954
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-SOFT-PUB-2018-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
https://indico.cern.ch/event/766872/contributions/3357987/attachments/1831267/2999045/iml_2019_3dgan.pdf
https://indico.cern.ch/event/766872/contributions/3357986/attachments/1831265/2999042/FASTSIM-at-IML-v1.pdf
https://indico.cern.ch/event/708041/contributions/3269704/attachments/1809200/2954059/2019_03_11_acat_ferber_final.pdf
https://indico.cern.ch/event/708041/contributions/3269731/attachments/1810406/2956826/em_shower_generation_with_graph_nns.pdf

