

Dark matter at the LHC

(WIMPs and beyond)

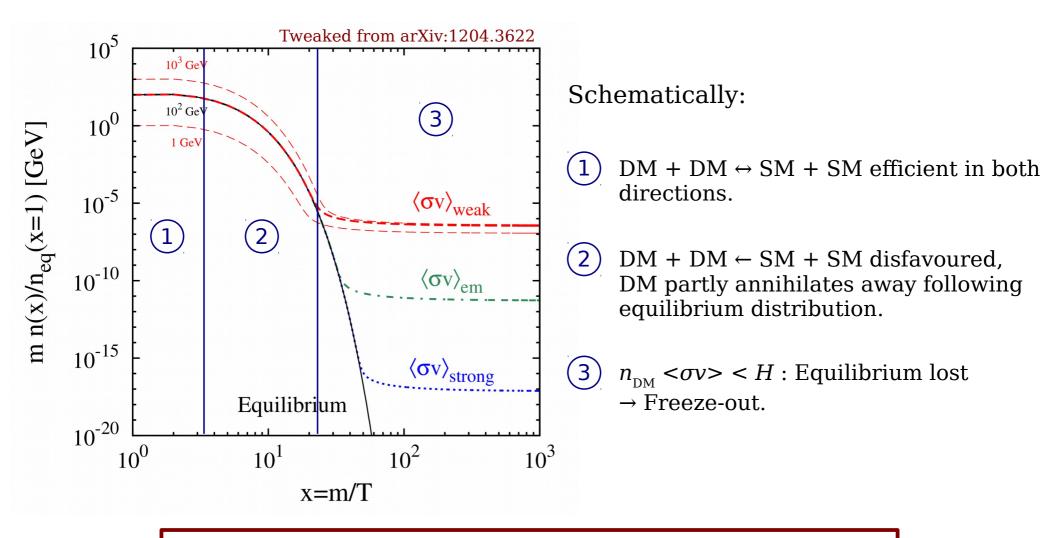
LHCP 2019 - Puebla, Mexico

Andreas Goudelis LPTHE - Jussieu

Outline

 \cdot Standard lore: thermal freeze-out (WIMPs)

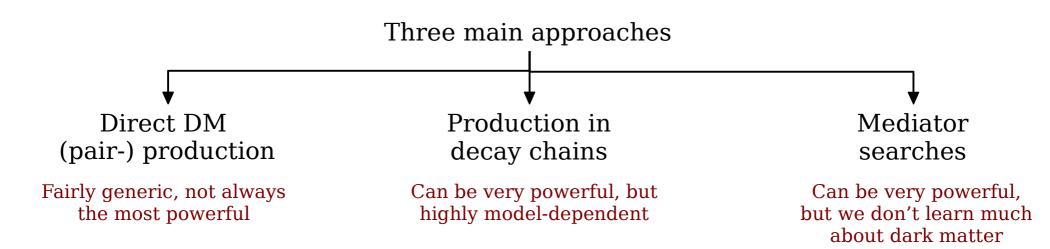
- \cdot Alternative @ weaker coupling: conversion-driven freeze-out
- \cdot Alternative @ feeble coupling: freeze-in
- \cdot Summary and outlook

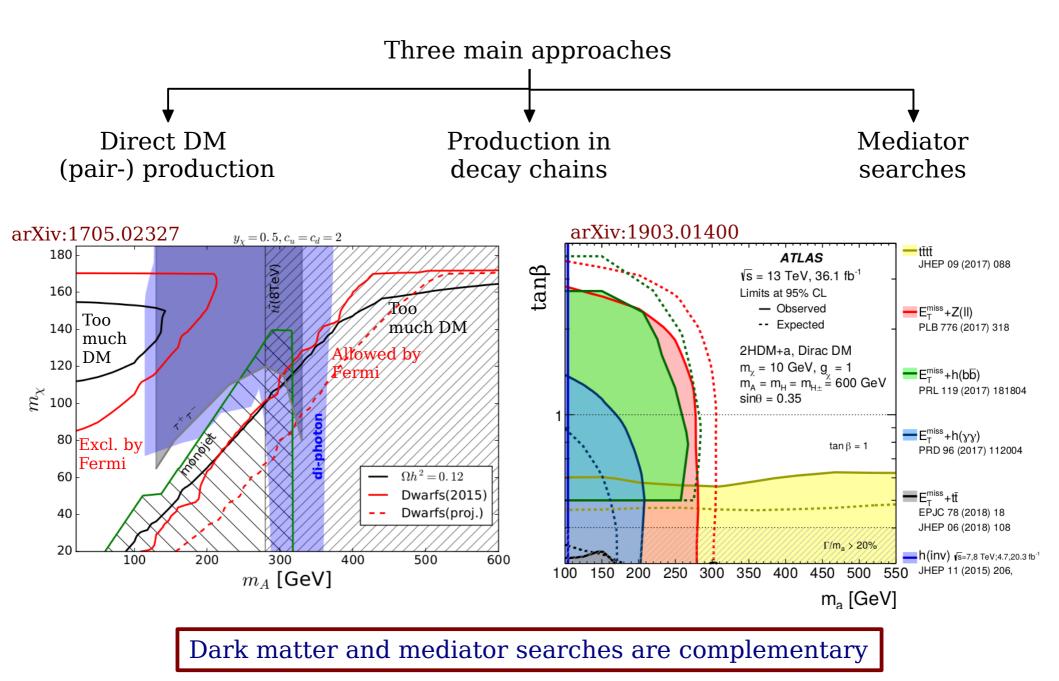

Cf also talks by:

- · P. Foldenauer (Monday, Exotics)
- · M. Borsato (Tuesday, Plenary)
- · S-C Hsu (Tuesday, Plenary)
- \cdot A-G Delannoy Sotomator (Wednesday, Higgs)
- \cdot This session (Thursday, Exotics)
- \cdot This afternoon (Thursday, SUSY)

Strong-ish coupling: Thermal freeze-out

Freeze-out: Main idea


Assume strong enough DM-SM interactions \rightarrow the two sectors in equilibrium.


Same picture even if we started from a zero initial density

As long as interactions strong enough

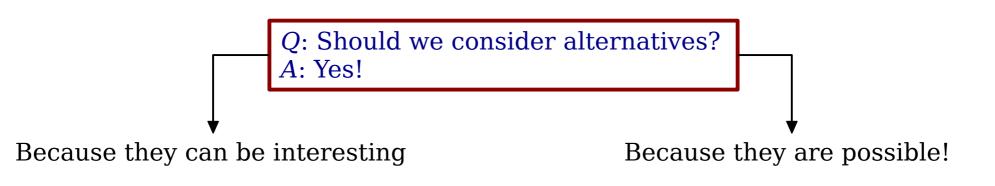
Freeze-out: LHC searches

Freeze-out: LHC searches

"Status of WIMPs"

Hard to summarize the status of \sim 30 years of model-building.

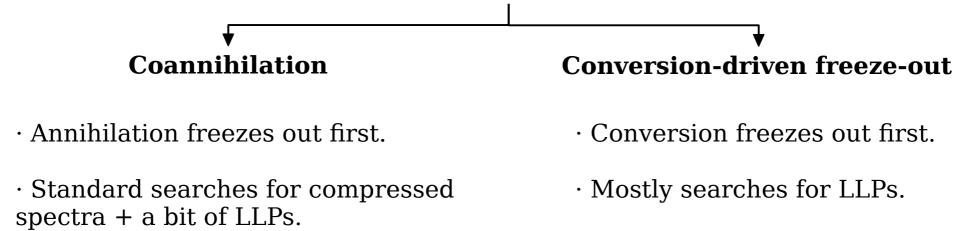
Q: Are mono-X searches obsolete? *A*: No


E.g. valuable for light DM, but I can understand that EXPs find them boring

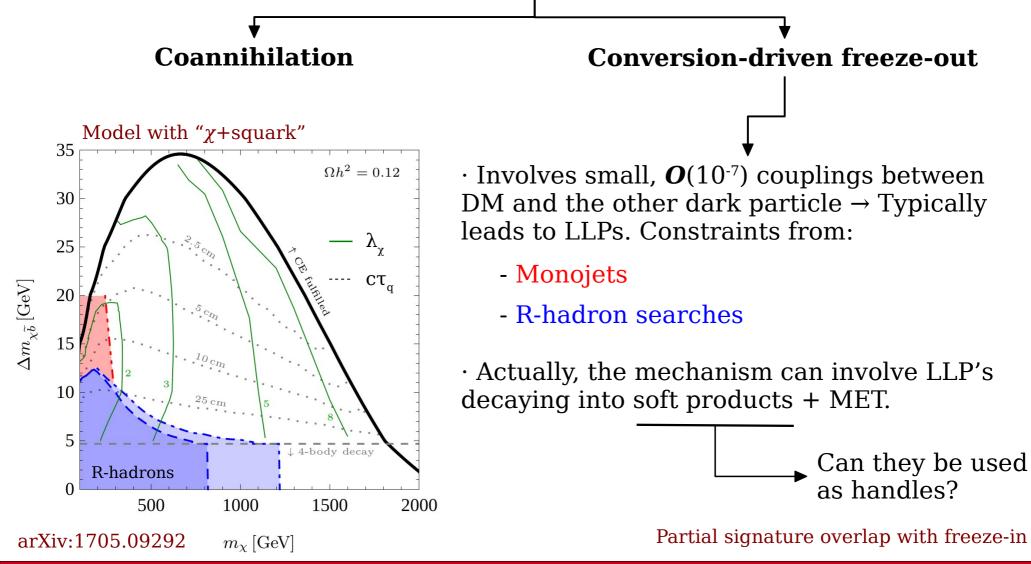
Q: Is thermal freeze-out more contrived? *A*: Yes!

It's no longer that trivial to write down a viable model with $m_{DM} \sim O(10^2)$ GeV

Q: Is thermal freeze-out excluded?
A: NoQ: Will we man
A: Not soon
Can go to higher masses,
coannihilation etcQ: Will we man
A: Not soon
Bu
mathematical contents


Q: Will we manage to exclude it? A: Not soon But combination with DD/ID can make it even more unappealing

Weaker coupling: Conversion-driven freeze-out


An alternative within freeze-out

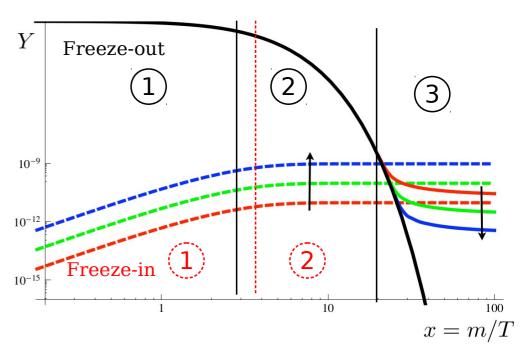
For small enough mass splitting between DM and the heavier dark sector particles, DM can annihilate with and/or convert into them: whichever reaction freezes out first sets the DM abundance.

An alternative within freeze-out

For small enough mass splitting between DM and the heavier dark sector particles, DM can annihilate with and/or convert into them: whichever reaction freezes out first sets the DM abundance.

Feeble coupling: Freeze-in

Freeze-in: main idea


arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...

Two basic premises :

- \cdot DM interacts very weakly with the SM.
- \cdot DM has a negligible initial density.

DM annihilation rate scales as $n_{y}^{2} < \sigma v >$

 \rightarrow DM-SM never in chemical equilibrium, DM doesn't annihilate

Tweaked from arXiv:0911.1120

Freeze-in: main idea

arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...

 10^{-9}

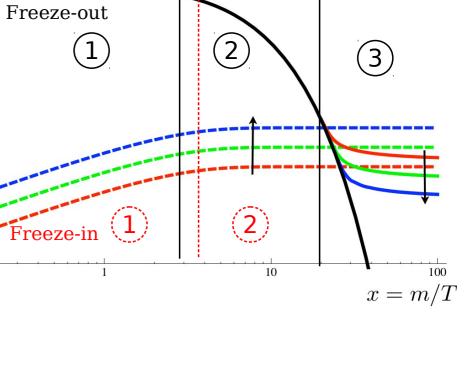
 10^{-12}

 10^{-15}

Two basic premises :

- \cdot DM interacts very weakly with the SM.
- \cdot DM has a negligible initial density.

DM annihilation rate scales as $n_{y^2} < \sigma v >$


 \rightarrow DM-SM never in chemical equilibrium, DM doesn't annihilate

For your freeze-in computational needs :

micrOMEGAs5.0 : freeze-in

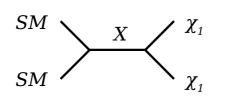
G. Bélanger^{1†}, F. Boudjema^{1‡}, A. Goudelis^{2§}, A. Pukhov^{3¶}, B. Zaldivar^{1††}

arXiv:1801.03509

Tweaked from arXiv:0911.1120

Freeze-in: main idea

arXiv:hep-ph/0106249 arXiv:0911.1120 arXiv:1706.07442...


Two basic premises :

- \cdot DM interacts very weakly with the SM.
- \cdot DM has a negligible initial density.

DM annihilation rate scales as $n_{y^2} < \sigma v >$

 \rightarrow DM-SM never in chemical equilibrium, DM doesn't annihilate

Annihilation:

· Requires $\lambda_1 \lambda_2 \sim 10^{-10}$ - 10^{-12}

Freeze-out 1 2 (3) 10^{-9} 10^{-12} Freeze-in 10^{-15} 10 100 x = m/TCan even be strongly χ_2 coupled! Decay: $\chi_1 + vis.$

Tweaked from arXiv:0911.1120

· Requires $\lambda \sim 10^{-13} \text{ x} (m_{\gamma 2}/m_{\gamma 1})^{1/2}$

Freeze-in with a charged parent

Consider an extension of the SM by a Z_2 -odd real singlet scalar *s* (DM) along with a Z_2 -odd vector-like SU(2)-singlet fermion *F* (parent).

contribution in arXiv:1803.10379 and arXiv:1811.05478

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \partial_{\mu}s \; \partial^{\mu}s - \frac{\mu_s^2}{2}s^2 + \frac{\lambda_s}{4}s^4 + \lambda_{sh}s^2 \left(H^{\dagger}H\right) + \bar{F}\left(iD\right)F - m_F\bar{F}F - \sum_f y_s^f \left(s\bar{F}\left(\frac{1+\gamma^5}{2}\right)f + \text{h.c.}\right)$$

 $f = \{e, \mu, \tau\} \rightarrow F \text{ transforms as } (\mathbf{1}, \mathbf{1}, -\mathbf{1})$ "Heavy lepton"
Distinguish three cases: $f = \{u, c, t\} \rightarrow F \text{ transforms as } (\mathbf{3}, \mathbf{1}, -\mathbf{2}/\mathbf{3})$

"Heavy u-quark"

 $\rightarrow f = \{d,s,b\} \rightarrow F \text{ transforms as } (\mathbf{3, 1, 1/3})$

"Heavy d-quark"

Parent particle lifetime

Assuming that DM is mostly populated by F decays, we can relate the relic abundance with the parent particle lifetime:

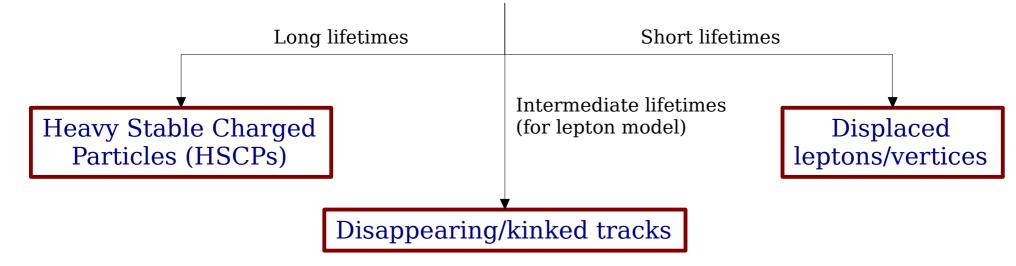
$$c\tau \approx 4.5 \text{ m} \xi g_F \left(\frac{0.12}{\Omega_s h^2}\right) \left(\frac{m_s}{100 \text{keV}}\right) \left(\frac{200 \text{GeV}}{m_F}\right)^2 \left(\frac{102}{g_*(m_F/3)}\right)^{3/2} \left\lfloor \frac{\int_{m_F/T_R}^{m_F/T_0} dx \ x^3 K_1(x)}{3\pi/2} \right\rfloor$$

Freeze-in favours long lifetimes, unless

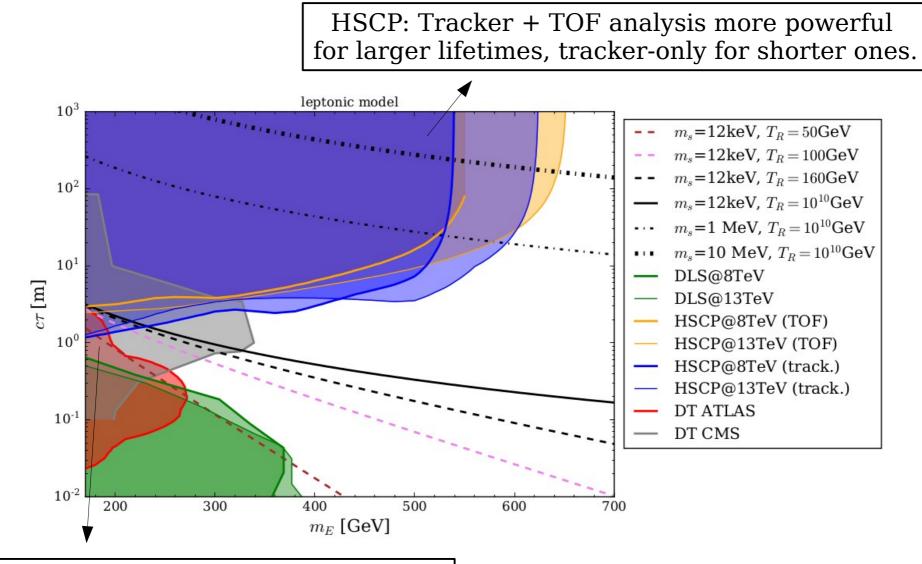
Dark matter is very light The reheating temperature is low

This brings us into the realm of long-lived particle searches

Signatures at the LHC


So what are the model's signatures at the LHC?

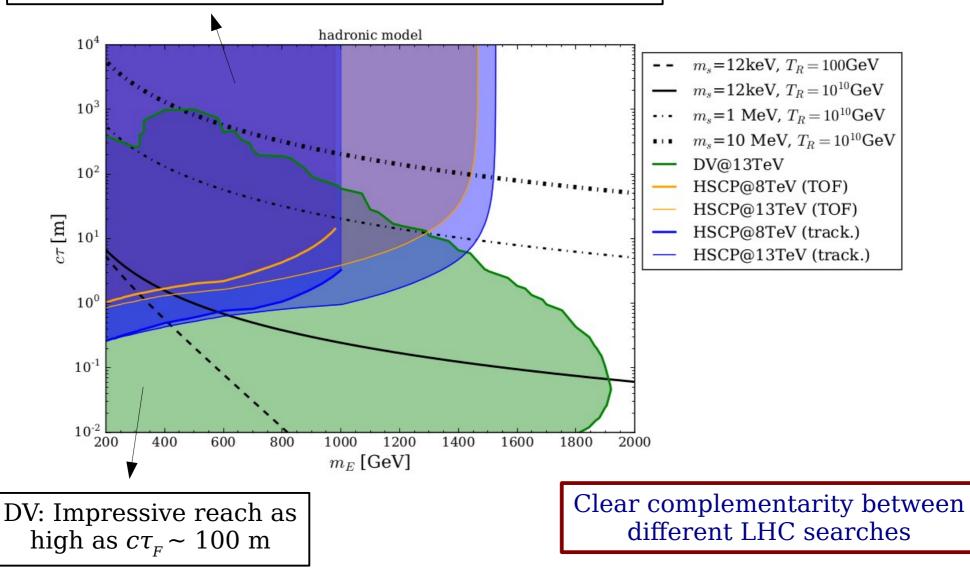
✓ Drell-Yan (lepton model)


• First of all, production through : <

Drell-Yan +QCD (quark model)

 \cdot Several search strategies, depending on the lifetime of the parent particle, i.e. which part of the detector it mostly decays at (if at all).

Results: lepton model



DT: Order-of-magnitude difference in peak sensitivity between ATLAS/CMS

More accurate estimates require extensive input from EXP collaborations

Results: quark model

HSCP: Tracker-only analysis always more powerful, neutral R-hadrons fail tracker + TOF selection.

Summary and outlook

 \cdot WIMPs are definitely not excluded. But they're becoming increasingly contrived thanks to the combined efforts of DD/ID/Collider experiments.

 \cdot In light of this situation (but not only!), alternative possibilities for dark matter genesis are being explored within the dark matter community.

They are cosmologically and theoretically interesting They give rise to new phenomenological signatures

 \cdot We focused on two such scenarios: conversion-driven freeze-out and freeze-in.

There are more possibilities, *e.g.* asymmetric dark matter.

 \cdot These scenarios naturally predict long-lived particles which can be copiously produced @ the LHC. They must be looked for.

Cosmology is still providing motivation for exciting searches at the LHC!

Additional material

Freeze-in vs freeze-out

Naively, the freeze-in BE is simpler than the freeze-out one. However :

Initial conditions:

 \cdot FO: equilibrium erases all memory.

· FI: Ωh^2 depends on the initial conditions.

Heavier particles:

 \cdot FO: pretty irrelevant (exc. coannihilations/late decays).

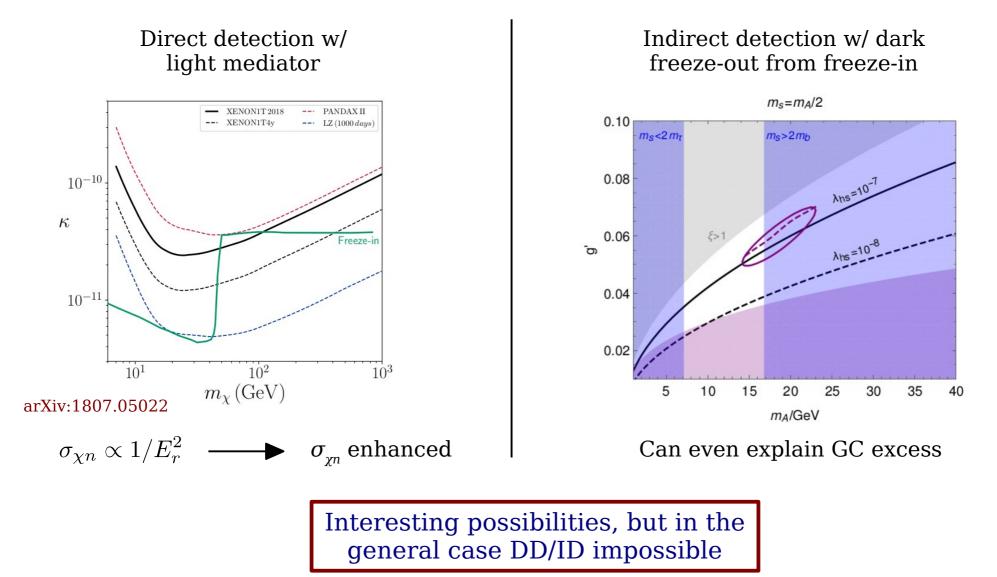
 \cdot FI: their decays can dominate DM production.

Need to track the evolution of heavier states

In equilibrium? Relics? FIMPs?

Need dedicated Boltzmann eqs

Relevant temperature:

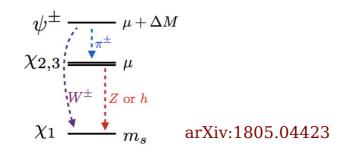

· FO: around $m_{\chi}/20$.

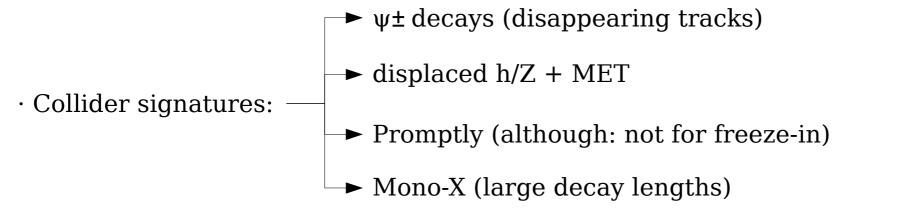
 \cdot FI: several possibilities ($m_\chi/3,\,m_{\rm parent}/3,\,T_{\rm R}$ or higher), depending on nature of underlying theory.

- Statistics/early Universe physics can become important.

When conventional searches work

Actually, there are two cases in which conventional searches *can* probe freeze-in scenarios

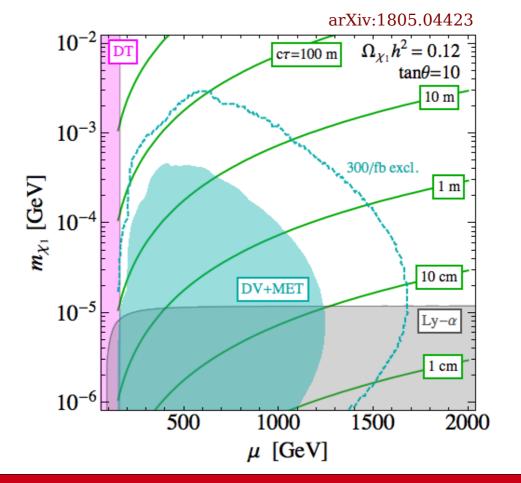



Another example: singlet-doublet model

Consider the singlet-doublet fermion model: SM + 2 Weyl (**2**, ±1/2) fermions ψ_u , ψ_d + a (**1**, **0**) fermion ψ_s arXiv:hep-ph/0510064

 $-\mathcal{L} \supset \mu \ \psi_d \cdot \psi_u + y_d \ \psi_d \cdot H \ \psi_s + y_u \ H^{\dagger} \psi_u \ \psi_s + \frac{1}{2} m_s \ \psi_s \psi_s + h.c.$

 \cdot DM can be *e.g.* produced through



Another example: singlet-doublet model

Consider the singlet-doublet fermion model: SM + 2 Weyl (**2**, ±1/2) fermions ψ_u , ψ_d + a (**1**, **0**) fermion ψ_s arXiv:hep-ph/0510064

 $-\mathcal{L} \supset \mu \ \psi_d \cdot \psi_u + y_d \ \psi_d \cdot H \ \psi_s + y_u \ H^{\dagger} \psi_u \ \psi_s + \frac{1}{2} m_s \ \psi_s \psi_s + h.c.$

 \cdot Combination of all constraints :

Non-LLP constraints: earth-bound

Focus on the first two models (heavy lepton, heavy *u*-quark).

Heavy lepton model

· LEP2: $m_F > 104 \text{ GeV}$

Actually slightly weaker, depending on lifetime

 \cdot No EWPT constraints

arXiv:1404.4398

· Muon lifetime: $\mu \rightarrow ess$

Checked, irrelevant

 \cdot LFV processes, in particular $\mu \to e \gamma$

 $Br(\mu \to e\gamma) \sim \frac{2v^4 (y^e_s)^2 (y^\mu_s)^2}{3m_F^4 (16\pi)^2} \sim 10^{-46}$

i.e. tiny

Heavy quark model

Direct collider bounds subleading
 Require prompt jets

· Running of $\alpha_s : m_F >$ few hundred GeV

 \cdot Rare decays, e.g. $K^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} ss$

NA62 can reach down to $y_s \sim 10^{-5}$

 \cdot Meson mixing: similarly to $\mu \rightarrow e \gamma$, tiny

Globally: still lots of room for interesting phenomenology

An interplay with baryo/leptogenesis ?

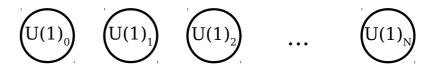
An upshot:

· In E/W baryogenesis and leptogenesis, the reheating temperature must in general be larger than both the EW phase transition temperature ($T_{_{EW}}$ ~160 GeV) and the sphaleron freeze-out one (T^* ~132 GeV).

 \cdot Assume s makes up all of dark matter.

If it doesn't, argument even stronger!

· Assume we manage to measure $c\tau_F$ and $m_F \rightarrow 2$ free parameters: m_s and T_R .


· Difficult to access $m_s \rightarrow$ take the lowest value allowed from Lyman- α .

If it's heavier, argument even stronger!

If measurements point to $T_{R} < T_{EW}$, T^{*} , we can falsify baryogenesis models that rely on efficient sphaleron transitions

arXiv:1511.01827, 1511.00132, 1610.07962...

- · Introduce a global U(1)^{N+1} symmetry, spontaneously broken at some scale f
- \rightarrow Below *f*: N+1 massless Goldstones

arXiv:1511.01827, 1511.00132, 1610.07962...

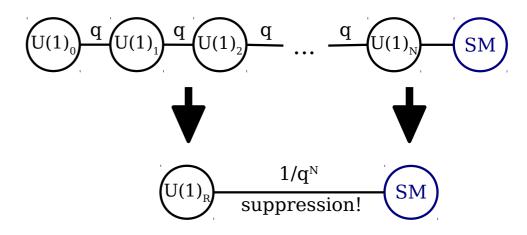
- · Introduce a global U(1)^{N+1} symmetry, spontaneously broken at some scale f
- \rightarrow Below *f*: N+1 massless Goldstones
- \cdot Further break U(1)^{\rm N+1} symmetry by introducing N mass parameters m^2
 - \rightarrow One massless Goldstone left

arXiv:1511.01827, 1511.00132, 1610.07962...

- \cdot Introduce a global U(1)^{\rm N+1} symmetry, spontaneously broken at some scale f
 - \rightarrow Below *f*: N+1 massless Goldstones
- \cdot Further break U(1)^{\rm N+1} symmetry by introducing N mass parameters m^2
 - \rightarrow One massless Goldstone left

$$\underbrace{U(1)_{0}}_{q}\underbrace{U(1)_{1}}_{q}\underbrace{U(1)_{2}}_{q} \cdots \underbrace{q}_{U(1)_{N}}$$

• For
$$m^2 < f^2$$
: $\mathcal{L}_{SCW} = -\frac{1}{2} \sum_{j=0}^N \partial_\mu \phi_j^\dagger \partial^\mu \phi_j - \left(\frac{1}{2} \sum_{i,j=0}^N \phi_i M_{ij}^2 \phi^j + \frac{m^2}{24f^2} \sum_{i,j=0}^N (\phi_i M_{ij}^2 \phi^j)^2 + \mathcal{O}(\phi^6)\right)$


· Diagonalising the ("tridiagonal") mass matrix, we obtain:

$$m_{a_0}^2 = 0, \quad m_{a_k}^2 = \lambda_k m^2; \quad \lambda_k = q^2 + 1 - 2q \cos \frac{k\pi}{N+1}$$

$$O_{j0} = \frac{\mathcal{N}_0}{q^j}, \ O_{jk} = \mathcal{N}_k \left[q \sin \frac{jk\pi}{N+1} - \sin \frac{(j+1)k\pi}{N+1} \right]; \quad \mathcal{N}_0 = \sqrt{\frac{q^2 - 1}{q^2 - q^{-2N}}}, \quad \mathcal{N}_K = \sqrt{\frac{2}{(N+1)\lambda_k}}$$

arXiv:1511.01827, 1511.00132, 1610.07962...

- \cdot Introduce a global U(1)^{N+1} symmetry, spontaneously broken at some scale *f*
- \rightarrow Below *f*: N+1 massless Goldstones
- \cdot Further break U(1)^{N+1} symmetry by introducing N mass parameters m^2
 - \rightarrow One massless Goldstone left

- \cdot The crucial point for us: if we couple some physics to the N-th site, its interactions with the zero mode scale as $1/q^{\rm N}$
 - \rightarrow For a sufficiently large number of scalars we can achieve a massive suppression

Can we exploit this feature to build a freeze-in model starting from O(1) couplings?

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

• Start from the original Clockwork Lagrangian and couple the N-th site to the SM through the Higgs portal interaction.

$$\mathcal{L}_{sFIMP} = \mathcal{L}_{kin} - \frac{1}{2} \sum_{i,j=0}^{N} \phi_i M_{ij}^2 \phi^j - \frac{m^2}{24f^2} \sum_{i,j=0}^{N} (\phi_i M_{ij}^2 \phi^j)^2 - \kappa |H^{\dagger} H| \phi_n^2$$

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

- \cdot Start from the original Clockwork Lagrangian and couple the N-th site to the SM through the Higgs portal interaction.
- \cdot Before EWSB, the zero mode is massless. After EWSB, it acquires a tiny, clockwork-suppressed mass.

For successful freeze-in, typically sub-keV \rightarrow Excluded

$$\mathcal{L}_{sFIMP} = \mathcal{L}_{kin} - \frac{1}{2} \sum_{i,j=0}^{N} \phi_i M_{ij}^2 \phi^j - \frac{m^2}{24f^2} \sum_{i,j=0}^{N} (\phi_i M_{ij}^2 \phi^j)^2 - \kappa |H^{\dagger} H| \phi_n^2$$

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

- \cdot Start from the original Clockwork Lagrangian and couple the N-th site to the SM through the Higgs portal interaction.
- \cdot Before EWSB, the zero mode is massless. After EWSB, it acquires a tiny, clockwork-suppressed mass.

For successful freeze-in, typically sub-keV \rightarrow Excluded

 \cdot Add an additional mass term for all sites \rightarrow Now can control the zero mode mass.

In arXiv:1709.04105 only to the N-th site \rightarrow MeV mass

$$\mathcal{L}_{sFIMP} = \mathcal{L}_{kin} - \frac{1}{2} \sum_{i,j=0}^{N} \phi_i M_{ij}^2 \phi^j - \frac{m^2}{24f^2} \sum_{i,j=0}^{N} (\phi_i M_{ij}^2 \phi^j)^2 - \kappa |H^{\dagger}H| \phi_n^2 + \sum_{i=0}^{n} \frac{t^2}{2} \phi_i^2$$

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

- \cdot Start from the original Clockwork Lagrangian and couple the N-th site to the SM through the Higgs portal interaction.
- Before EWSB, the zero mode is massless. After EWSB, it acquires a tiny, clockwork-suppressed mass.

For successful freeze-in, typically sub-keV \rightarrow Excluded

 \cdot Add an additional mass term for all sites \rightarrow Now can control the zero mode mass.

In arXiv:1709.04105 only to the N-th site \rightarrow MeV mass

 \cdot Huge number of processes from zero mode/gear quartic interactions.

Computationally untractable

$$\mathcal{L}_{sFIMP} = \mathcal{L}_{kin} - \frac{1}{2} \sum_{i,j=0}^{N} \phi_i M_{ij}^2 \phi^j - \frac{m^2}{24f^2} \sum_{i,j=0}^{N} (\phi_i M_{ij}^2 \phi^j)^2 - \kappa |H^{\dagger}H| \phi_n^2 + \sum_{i=0}^{n} \frac{t^2}{2} \phi_i^2$$

A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

- \cdot Start from the original Clockwork Lagrangian and couple the N-th site to the SM through the Higgs portal interaction.
- Before EWSB, the zero mode is massless. After EWSB, it acquires a tiny, clockwork-suppressed mass.

For successful freeze-in, typically sub-keV \rightarrow Excluded

 \cdot Add an additional mass term for all sites \rightarrow Now can control the zero mode mass.

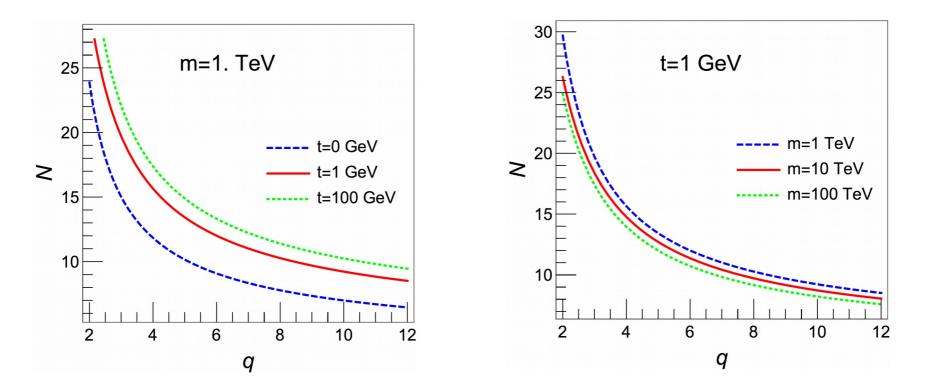
In arXiv:1709.04105 only to the N-th site \rightarrow MeV mass

 \cdot Huge number of processes from zero mode/gear quartic interactions.

Computationally untractable

 \cdot Deform quartic piece of the scalar potential to eliminate them.

Note: Just a computational limitation!


$$\mathcal{L}_{sFIMP} = \mathcal{L}_{kin} - \frac{1}{2} \sum_{i,j=0}^{N} \phi_i M_{ij}^2 \phi^j - \frac{m^2}{24f^2} \sum_{i,j=0}^{N} (\phi_i \tilde{M}_{ij}^2 \phi^j)^2 - \kappa |H^{\dagger} H| \phi_n^2 + \sum_{i=0}^{n} \frac{t^2}{2} \phi_i^2$$

$$(\tilde{M}_{ij} \equiv M_{ij} + \kappa v^2 \delta_{iN} \delta_{jN})$$
NB: Now includes *t*-terms

A scalar Clockwork FIMP - Results

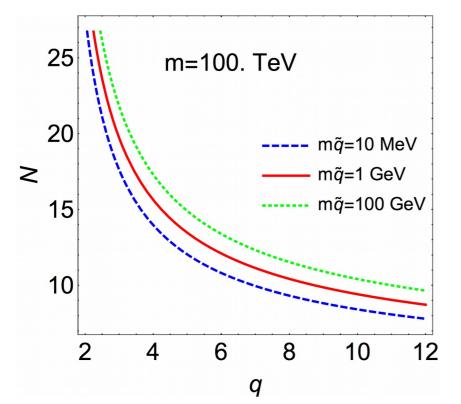
A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

Combinations of (q,N) for which we can obtain correct freeze-in:

 \cdot Higgs portal set to 1

- \cdot t=0: DM mass generated entirely from Higgs portal (DM too light)
- · For these parameter choices, DM abundance dominated by gear decays $a_i \rightarrow a_0 + h$

A fermion Clockwork FIMP


A. G., K. Mohan, D. Sengupta, arXiv:1807.06642

A similar game can be played for a fermionic Clockwork sector

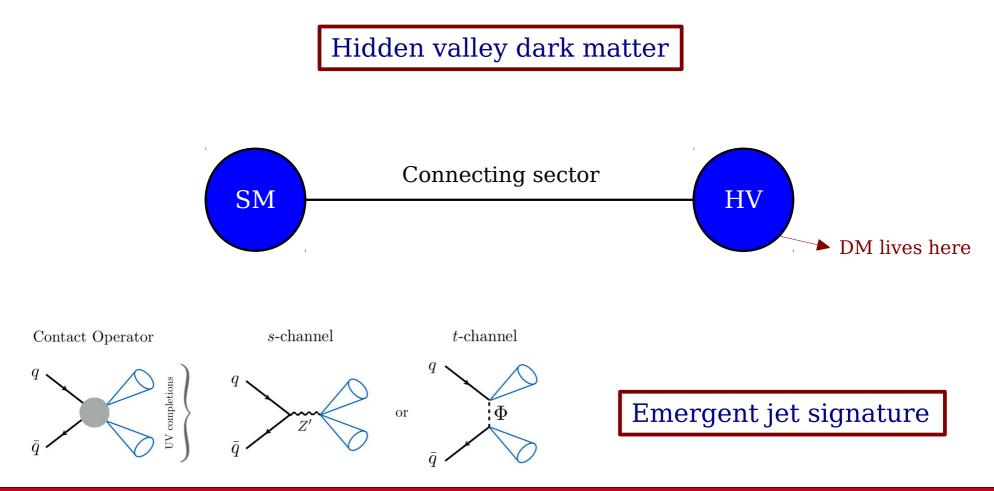
$$\mathcal{L}_{fFIMP} = \mathcal{L}_{kin} - m \sum_{i=0}^{N-1} (\bar{\psi}_{L,j} \psi_{R,j} - q \bar{\psi}_{L,j} \psi_{R,j+1} + h.c) - \frac{M_{L}}{2} \sum_{i=0}^{N-1} (\bar{\psi}_{L,i}^{c} \psi_{L,i}) - \frac{M_{R}}{2} \sum_{i=0}^{N} (\bar{\psi}_{R,i}^{c} \psi_{R,i}) + i\bar{L}DL + i\bar{R}DR + M_{D}(\bar{L}R) + Y\bar{L}\tilde{H}\psi_{R,N} + h.c$$

$$-\psi_{LR}: \text{ CW sector chiral fermions}$$

- *L*/*R*: (**1**, **2**, **-1**/**2**) VL leptons

· Clockwork sector set heavy to avoid mixing between gears and V-L leptons \rightarrow no interactions involving gauge bosons.

Again, just a computational issue


• Dominated by decays of CW gears and V-L fermions into DM + SM.

Proof of principle: the Clockwork mechanism can be used to build viable freeze-in models

Asymmetric DM

Main idea: DM annihilates very efficiently, observed abundance due to initial asymmetry between DM and anti-DM (much like in the baryonic sector).

One class of realisations:

