Recent results on searches for Dark Matter in ATLAS

LHCP Puebla 23.05.19

Will Kalderon, Lund University (SE)

on behalf of the ATLAS Collaboration

Recent (summary paper of) results

300

200

500

1000

1500

2000

2500

3000

3500

m_{z'} [GeV]

Constraints on mediatorbased dark matter and scalar dark energy models using √s=13 TeV pp collision data collected by the ATLAS detector <u>arXiv: 1903.01400,</u> accepted by JHEP

2017-19 ATLAS DM-related results

3 / 24

"Mono-X", E^{Tmiss} + X

- ET^{miss} + jet 36 fb⁻¹, JHEP 01 (2018) 126
- ET^{miss} + photon 36 fb⁻¹, Eur. Phys. J. C 77 (2017) 393
- E_T^{miss} + Z(II) 36 fb⁻¹, PLB 776 (2017) 318
- E_T^{miss} + V(qq) 36 fb⁻¹, <u>JHEP 10 (2018) 180</u>
- E_T^{miss} + top 36 fb⁻¹, <u>JHEP 05 (2019) 41</u>
- E_T^{miss} + h(γγ) 36 fb⁻¹, Phys. Rev. D 96 (2017) 112004
- ET^{miss} + h(bb) 80 fb⁻¹, <u>ATLAS-CONF-2018-039</u>

E_Tmiss + h(bb)

 \bar{q}

b

h

Z

E_T^{miss} + h(bb) 80 fb⁻¹
 ATLAS-CONF-2018-039

E_T^{miss} + h(bb): selection

E_T^{miss} + h(bb): selection

E_T^{miss} + h(bb): selection

Additional kinematic and topological selections

i=1

FR: fixed radius VR: variable radius

$$\mathbf{R} \rightarrow \mathbf{R}_{\mathrm{eff}}(p_{\mathrm{T}}) \approx \frac{\rho}{p_{\mathrm{T}}}$$

0.02<R<0.4, *ρ*=30 GeV

VR jet radius 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 100 1000 10

Jet p_T [GeV]

E_Tmiss + h(bb): background estimate

tt, W(I ν)+jets, Z($\nu\nu$)+jets:

Simultaneous fit across multiple regions and variables $\begin{array}{ll} 0\ell \ {\rm SR} : E_{\rm T}^{\rm miss} < 500 \ {\rm GeV} & 0\ell \ {\rm SR} : E_{\rm T}^{\rm miss} > 500 \ {\rm GeV} \\ 1\mu \mbox{-} {\rm CR} : E_{\rm T}^{\rm miss, \ {\rm no} \ \mu} < 500 \ {\rm GeV} & 1\mu \mbox{-} {\rm CR} : E_{\rm T}^{\rm miss, \ {\rm no} \ \mu} > 500 \ {\rm GeV} \\ 2\ell \mbox{-} {\rm CR} : p_{\rm T}^{\ell\ell} < 500 \ {\rm GeV} & 2\ell \mbox{-} {\rm CR} : p_{\rm T}^{\ell\ell} > 500 \ {\rm GeV} \end{array}$

0 lepton	1 muon	2 leptons		
SR	$t\bar{t}$ and W+jets CR	Z+jets CR		
$E_{ m T}^{ m miss}$	$E_{\mathrm{T}}^{\mathrm{miss, no\mu}}$	$p_{\mathrm{T}}^{\ell\ell}$		
Resolved: [150,200), [200,350) and [350,500) GeV				
Merged: Larger than 500 GeV				
m _h	muon charge	Event yield		
	$ \begin{array}{c} \textbf{0 lepton} \\ SR \\ E_{T}^{miss} \\ Resolved: \\ m_{h} \end{array} $	0 lepton1 muonSR $t\bar{t}$ and W +jets CR E_T^{miss} $E_T^{miss, no \mu}$ Resolved:[150,200), [200,35]Merged:Larger the m_h muon charge		

24

9

Z(*vv***)+jets**:

- treat leptons as Ermiss
- Overall yield in each bin

E_Tmiss + h(bb): background estimate

tt, W(I ν)+jets, Z($\nu\nu$)+jets:

Simultaneous fit across multiple regions and variables

W(Iv)+jets and ttbar:

- Single control region (1μ)
- More μ^+ from W+jets, equal in ttbar

 $\begin{array}{ll} 0\ell \ {\rm SR} : E_{\rm T}^{\rm miss} < 500 \ {\rm GeV} & 0\ell \ {\rm SR} : E_{\rm T}^{\rm miss} > 500 \ {\rm GeV} \\ 1\mu \mbox{-} {\rm CR} : E_{\rm T}^{\rm miss, \ {\rm no}\,\mu} < 500 \ {\rm GeV} & 1\mu \mbox{-} {\rm CR} : E_{\rm T}^{\rm miss, \ {\rm no}\,\mu} > 500 \ {\rm GeV} \\ 2\ell \mbox{-} {\rm CR} : p_{\rm T}^{\ell\ell} < 500 \ {\rm GeV} & 2\ell \mbox{-} {\rm CR} : p_{\rm T}^{\ell\ell} > 500 \ {\rm GeV} \end{array}$

	0 lepton	1 muon	2 leptons	
Region	SR	$t\bar{t}$ and W+jets CR	Z+jets CR	
	$E_{ m T}^{ m miss}$	$E_{\mathrm{T}}^{\mathrm{miss, no\mu}}$	$p_{\mathrm{T}}^{\ell\ell}$	
$E_{\rm T}^{\rm miss}$ or $E_{\rm T}^{\rm miss}$ proxy	Resolved: [150,200), [200,350) and [350,500) GeV			
	Merged: Larger than 500 GeV			
Fit variable in each $E_{\rm T}^{\rm miss}$ bin	m _h	muon charge	Event yield	

(more $u\bar{d} \to W^+$ than $d\bar{u} \to W^-$ in pp collider)

10 / 24

E_T^{miss} + h(bb): results

Alternative: dark matter? What dark matter?

Heavy resonances, Jennifer Ngadiuba, <u>Tuesday am</u> CMS hadronic resonances, David Yu, <u>Tuesday pm</u> Lepton resonances, Noam Tal Hod, <u>this session</u>

Alternative: dark matter? What dark matter?

13 / 24

Resonance searches summary

14 / 24

Opportunity

- Now with L1 and HLT turnons on the same x axis scale
- Every event in the green shaded region (~200 440 GeV) has full HLT jet reconstruction, but is thrown away because we don't have space to store the full event
- Idea also used (and pioneered) by LHCb and CMS: record partial events

"Trigger-Level Analysis"

- Store only HLT jet 4vectors and some summary info
 tiny event size
 (0.5% of full size)
- Allows all events passing unprescaled L1_J100 to be recorded to disk
- Very large event rate, tiny bandwidth impact
- Huge event rates just for dijet resonance search :-)

New analyses: add b-tagging

 Interesting interplay between b-tagged and inclusive across mass range: dependent on b-tagging performance across p_T range (backup)

•
$$S^* = \varepsilon_b^2/6$$
; $B^* = \varepsilon_l^2 \implies S/sqrt(B)^* = \varepsilon_b^2/6 \varepsilon_{light}$

Complementarity between DM searches

mono-X and resonance searches complement each other in schannel mediator models

Caveats:

- plot doesn't include merged dijet+ISR

20 / 24

or latest dijet / resolved dijet+ISR

Complementarity between DM searches

Other models

- 2HDM+a: many experimental signatures with non-trivial interplay
- Higgs -> invisible (Higgs portal): see Andres' talk yesterday

Direct detection and collider searches

- Also complementarity with direct detection
 - Again, reach of different approaches depends on model and assumptions
- Caveat: direct detection limits 90% CL, collider 95%

Conclusions

- Broad set of approaches to searching for Dark Matter with ATLAS, summarised in recent paper
- Several recent results, more to come with full ~140fb-1 dataset
- Benefitting from improved trigger and performance of ATLAS detector as well as larger dataset
- Outlook bright for run 3: extensive new trigger hardware and software will expand scope of what is possible, coupled with new and maturing analysis techniques and more signatures

Backup

ISR Jet vs Photon

	$m_{Z'} = 160 \text{ GeV}$		$m_{Z'} = 220 \text{ GeV}$	
ISR jet (ISR γ) selection criterion	ISR jet ϵ [%]	ISR $\gamma \epsilon$ [%]	ISR jet ϵ [%]	ISR $\gamma \epsilon$ [%]
$p_{\rm T}^J > 450 \ (200) \ { m GeV}$	0.22	5.8	0.17	1.1
$\rho^{\text{DDT}} > 1.5$	0.11	2.4	0.07	0.4
$p_{\rm T}^{\rm ISR}$ > 420 (155) GeV	0.09	2.4	0.06	0.4
$\tau_{21}^{\rm DDT} < 0.5$	0.07	1.3	0.04	0.3

- Jet: lower acceptance due to higher threshold
 - Single jet: E_T > 420 GeV (~30 Hz)
 - Single photon: $E_T > 140 \text{ GeV} (\sim 40 \text{ Hz})$
- Higher XS thanks to α_s

(Rates from <u>ATL-</u> <u>DAQ-PUB-2018-002</u>)

ISR Jet vs Photon

ISR Jet vs Photon: combinatorics

Boosted dijet: easy to group into (ISR, resonance)

Resolved: take lead jet as ISR, next two as resonance?

Breaks down for heavier Z': which to choose? Smear signal peak

30 / 24

General improvement in S/sqrt(B) thanks to b-tagging

General improvement in expected limit thanks to b-tagging (Fainter line is inclusive)

TLA payoff

"	'standard"	
	dijet	TLA
lead jet p⊤ >	440	220
sublead jet p⊤ >	60	85
m _{jj} >	1100	520

4x10⁷ events in first bin in 29.3 fb⁻¹ of 2016 data

33 / 24

TLA calibration

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges
 - |y*|<0.3: 27 bins, |y*|<0.6: 19

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges
 - |y*|<0.3: 27 bins, |y*|<0.6: 19

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges
 - |y*|<0.3: 27 bins, |y*|<0.6: 19

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges
 - |y*|<0.3: 27 bins, |y*|<0.6: 19

- Fit to functional form
 - Choose one with best χ^2
- Very large number of events -> very little scope for QCD to deviate from functional form
- In 2015, could not fit whole m_{jj} range, hence truncated fit at 1250 GeV
- Solution, also used by highmass dijet 37 fb⁻¹ result: fit sub-ranges
 - |y*|<0.3: 27 bins, |y*|<0.6: 19

TLA results

- "BumpHunter" with backgroundonly fit: no significant excesses found
- Signal + Background fit: set limits (areas of flexibility give observed - expected differences)
- Similar sensitivity to conventional dijet resonance search at 1.5 TeV
- Can go much lower in m_{Z'}
 - 450-700 GeV using dedicated signal region with L1_J75 for some of 2016

TLA: rest of run 2

- TLA is not a license to print money write out everything
- Most significant limitation is the total L1 rate
- However, this falls significantly over a fill as instantaneous luminosity decreases
- Limited scope for utilisation by other triggers, since they remain bound by the total bandwidth averaged over the fill

TLA: rest of run 2

- TLA is not a license to print money write out everything
- Most significant limitation is the total L1 rate
- However, this falls significantly over a fill as instantaneous luminosity decreases
- Limited scope for utilisation by other triggers, since they remain bound by the total bandwidth averaged over the fill
- Can be used for extra TLA triggers (increase random accept rate of lower-threshold L1 triggers and write them out)

TLA: rest of run 2

- TLA is not a license to print money write out everything
- Most significant limitation is the total L1 rate
- However, this falls significantly over a fill as instantaneous luminosity decreases
- Limited scope for utilisation by other triggers, since they remain bound by the total bandwidth averaged over the fill
- Can be used for extra TLA triggers (increase random accept rate of lower-threshold L1 triggers and write them out)

Trigger operations 2018

43 / 24

Overview: Large-R + ISR

arxiv: 1801.08768, EXOT-2017-01

- Use substructure τ₂₁ to distinguish 2subjet signal from single-subjet QCD background
 - Use "designed decorrelated tagger" method to decorrelate from jet mass
- Main background QCD
 - Data-driven method for background estimation based on inverted τ_{21}^{DDT}
 - Method validated on W/Z peak
 - Separate signal region for each mass point

- g_q limit scales as data^{1/4} => 37 to 120 fb⁻¹ = factor 1.3
- New trigger strategies for large-R, including substructure information in the trigger (2017 has mass, run 3 will have more) -> much more data
- Optimised grooming methods <u>ATL-PHYS-PUB-2017-020</u> -> better S/B
- Also improvements in jet substructure resolution thanks to track information in jet reconstruction inputs <u>ATL-PHYS-PUB-2017-015</u>