

Measurements with fermionic Higgs decays

Couplings and searches

Markus Spanring*

ON BEHALF OF ATLAS AND CMS

LHCP 2019 - Puebla

* supported by Austrian Science Fund (FWF): 28857-N36

- Higgs coupling to vector bosons defined by EWK symmetry breaking.
- Higgs coupling to **fermions** via ad-hoc
 Yukawa couplings ∝ m_f.
 - several BSM scenarios predict changes in Yukawa couplings.

Information on Higgs couplings to fermions is essential.

- 3rd generation fermions
 - Observed direct coupling to:
 - \succ τ -lepton (ATLAS/CMS)
 - > b-quark (A/C)
 - ▹ top-quark (A/C via tħH)
- $1^{st}/2^{nd}$ generation fermions
 - Upper limits set for:
 - ≻ μ (A/C)
 - ≻ charm-quark (A)
 - No measurements
 - ➤ electron
 - > u/d/s-quark

Phys. Rev. Lett. 119, 051802 (2017)	Search using 7+8+13TeV(2015-2016) data
ATLAS-CONF-2018-026	Search using 13TeV(2015-2017) data

<u>Phys. Rev. Lett. 122, 021801 (2019)</u>	Search using 7+8+13TeV(2016) data
--	-----------------------------------

- Higgs boson decay to muons most sensitive channel to investigate couplings to 2nd generation fermions.
 very rare process, but high di-muon mass resolution makes channel accessible
- Signal would appear as narrow resonance over smoothly falling background (primarily Drell-Yan and leptonic top decays.)

- Use BDT to select events in 2 VBF categories.
- All other events categorised in 6 ggF categories based on p_τ^{μμ} and η^μ

CMS

- Separate signal from background using BDT.
- Define 15 signal regions based on BDT score and η^μ.

• Use analytic functions to describe signal and background distributions

 $H \rightarrow \mu\mu$ results

95% CL observed (background-only expected) upper limit on $\sigma x \mathfrak{B}$ is

Phys. Rev. Lett. 120 (2018) 211802	Search using 13TeV(2015+2016) data
<u>Phys. Lett. B 786 (2018) 134</u>	h(125)/Z->J/psi gamma
ATL-PHYS-PUB-2018-016	HL-LHC prospects

No searches published yet

- Challenging due to small BR, trigger strategy and difficult jet flavor identification.
 - Two other approaches:
 - Searches for charmonium decay.
 - (e.g. Phys. Lett. B 786 (2018) 134)
 - Extract constraints from kinematics (e.g. <u>Phys. Lett. B 792 (2019) 369</u>)
- Tagging of c-jet challenging:
 - Shorter lifetime and decay to fewer charged particles than b-hadrons.
 - Trade-off between rejection of light-jets and rejection of b-jets.
- Data analyzed for $ZH \rightarrow \ell \ell c \bar{c}$ process in four categories:
 - Categories defined using p_T^Z and number of c-tags.
 - Requirement on angular separation of dijet system to suppress background events.
 - Dijet invariant mass m_{cc}used as discriminating variable.

H → cc̄ results

211802

120

Lett.

Rev.

Observed (expected) upper limit on $\sigma x \mathfrak{B}$ is 2.7 $(3.9^{+2.1}_{-1.1})$ pb

Corresponds to 110x the SM expectation.

HL-LHC prospect for VH, H→cc̄ with 3000 fb⁻¹ at 14 TeV assuming stat. uncertainties only and improvement of light-flavour rejection of factor 2

 $\mu_{ZH(c\bar{c})} < 6.3$

ATL-PHYS-PUB-2018-016

ATLAS			
		Phys. Rev. D 98, 052003	Search for VBF H→bb 13TeV(partial 2015-2016)
		<u>Phys. Lett. B 786 (2018) 59</u>	Observation using 7+8+13TeV(2015-2017) data
		<u>1903.04618</u> (submitted to JHEP)	STXS* measurement using 13TeV(2015-2017) data
See previous talk by Luca			
		CMS	
		<u>Phys. Rev. Lett. 121, 121801 (2018)</u>	Observation using 7+8+13TeV(2016-2017) data

*simplified template cross sections (STXS) For details see talk by Chikuma on Tuesday

- Dominant decay of SM Higgs boson is into pair of b-quarks: BR(H→bb) ~ 58%
 - Similar challenges like in H→cc̄ due to large jet backgrounds and difficult to trigger.
- Event characterized by two central b-jets and two light-quark jets with large η gap + high momentum γ in photon channel.
 - <u>3 categories:</u> extra photon,
 4 central jets, 2 forward 2 central jets
- BDT trained to separate signal/background in each channel.
- BDT response used to define several categories in which m_{bb} is finally fit to data.

H → bb̄ results

Observation announced by both experiments with observed (expected) significance:

ATLAS	5.4 (5.5) σ
CMS	5.6 (5.5) σ

Phys. Lett. B 786 (2018) 59

<u>Phys. Rev. D 99, 072001 (2019)</u>	Observation and STXS measurement using 7+8+13TeV(2015-2016) data

CMS

	<u>Phys. Lett. B 779 (2018) 283</u>	Observation using 7+8+13TeV(2016) data	
	<u>1903.06973</u> (Submitted to Phys. Rev. D)	anomalous HVV coupling using 13TeV(2016) data	
See previous talk by Luca \rightarrow	1809.03590 (Submitted to JHEP)	VH, H→ττ using 13TeV(2016) data	
	CMS-PAS-HIG-18-032	STXS measurement using 13TeV(2016-2017) data	

- Higgs boson decay to pair of *τ*-leptons is most promising channel to explore Yukawa-couplings to fermions.
 - \circ Smaller BR than H+bb but better experimental accessibility.
- In CMS most sensitive ditau final states are considered (eµ, eτ, µτ, ττ) in ATLAS all final states (+ ee, µµ).
 - CMS categories: 0-jet, boosted, vbf
 - ATLAS categories: boosted, vbf
- Major backgrounds from Drell-Yan, W+jets, QCD and top production.
- Both collaborations able to observe H→ττ signal with more than 5σ by combining data collected at 7, 8 and 13 TeV.

$H \rightarrow \tau \tau$ strategy with ML approach

- Result from CMS in context of simplified template cross sections (STXS)
- 90% of backgrounds are estimated with fully data-driven methods.
 - Tau embedding ($Z \rightarrow \tau \tau$)
 - Fake factor method (jet $\rightarrow \tau_{\rm h}$)
- Output nodes of Multiclass NN used to define several signal and background categories.
- Cut-based approach used to further split signal categories according to STXS bins.
 - ATLAS STXS result uses fully cut based approach.

$H \rightarrow \tau \tau$ results on STXS

CMS Preliminary	• Observation • SM expect-tion sc-le \oplus PDF \oplus $a_s \oplus$ BR uncert-inties			
				μ_{proc}
	HHH	= 0 Jet		- 0.40 ^{+0.76} _{- 0.75}
(-f-ot.	—		p _T ^H [0, 60]	- 0.34 ^{+1.37} _{- 1.39}
LO XX XX XX	-	= 1 Jet	p _T ^H [60, 120]	$1.26^{+1.56}_{-1.50}$
H, bb D, NL heg N			<i>p</i> ^H _T [120, ∞]	$1.80^{+1.18}_{-1.01}$
	 -	\geq 2 Jet		$0.47 \begin{array}{c} +0.91 \\ -0.86 \end{array}$
Ö z ?	m	Inclusive		$0.36^{+0.36}_{-0.37}$
ti		VBF topolog	у	1.00 +0.30 - 0.29
H H H		V(qq)H topo	logy	- 1.17 ^{+1.54} - 1.47
в иго 10 лго 10 лго		$p_{\rm T}^{\rm j1}$ > 200 Ge	V	$1.41^{+1.03}_{-1.05}$
		Rest		- 1.06 ^{+2.75} - 2.67
VBI	- ++	Inclusive		1.03 ^{+0.30} -0.29
-5	0	5	Best fit μ_{pl}	$\sigma_{\rm oc} = \sigma_{\rm proc} / \sigma_{\rm SN}$

A statistic line (and) president and (and)			
Process	Particle-level selection	signal strength μ	
ggF	$N_{jets} \ge 1, \ 60 \ < p_T^H < 120 \ GeV, \ y_H < 2.5$	4.48 ± 2.28	
ggF	$N_{jets} \ge 1, \ p_T^H > 120 \ GeV, \ y_H < 2.5$	0.86 ± 0.55	
VBF	<i>y_H</i> < 2.5	1.14 ± 0.52	

ATLAS $\sqrt{s} = 13 \ TeV$, $36.1 \ fb^{-1}$

Markus Spanring (HEPHY)

CMS-PAS-HIG-18-032

77.4 fb⁻¹ (13 TeV)

- Presented most recent results on fermionic Higgs decays from ATLAS and CMS.
- Established couplings to **3rd generation** fermions.
- $H \rightarrow \mu\mu$ in reach with full Run II and Run III data.
- First search for $H \rightarrow c\bar{c}$ at the LHC.
- So far no deviation from the SM prediction observed.

