Status and prospects of STXS measurements in ATLAS and CMS

Chikuma Kato (TDLI, SJTU) on behalf of the ATLAS and CMS collaborations May 20, 2019, LHCP, Puebla

Introduction

[1610.07922]

- Simplified template cross sections (STXS) are the Higgs boson production cross sections in exclusive kinematic bins
- Reduce model dependence, maximise sensitivity to new physics, constrain coupling modifiers (κ), EFT coefficients, BSM tests

 \geq 2-jet $\frac{\text{VBF cuts}}{p_T^H < 200}$

 $p_T^{Hjj}[0,25]$

 $p_T^{Hjj}[25,\infty]$

 $\simeq 2i$

 \gtrsim 3j

Stage 1 binning

ggF

= 1-jet

 $p_T^H\left[0,60
ight]$

 $p_T^H\left[60,120
ight]$

 p_T^H [120, 200]

 $p_T^H\left[200,\infty
ight]$

BSM

 \geq 2-jet

+)

+)

 $p_T^H\left[0,60
ight]$

 $p_T^H\left[60,120
ight]$

 $p_{T}^{H}[120,200]$

 p_T^H [200, ∞

BSM

= 0-jet

- $VBF \quad (EW qqH incl. VH \rightarrow qqH)$ $p_T^{j1}[0, 200] \qquad p_T^{j1}[200, \infty]$ $\geq 2 \text{-jet VBF cuts} \qquad \geq 2 \text{-jet VH cuts } (+) \text{ Rest}$
 - ggF, VBF, VH bins are split using number of jets and pT
 - Possibilities for merging bins are indicated by (+)
 - There is revised Stage 1.1 binning to capture more of the VBF kinematic and the low pT gluon fusion [twiki]

In this talk

- Following results are covered in this talk:
 - ATLAS combined at 80 fb⁻¹ [ATLAS-CONF-2019-005]
 - CMS combined at 36 fb⁻¹ [<u>1809.10733</u>]
 - ATLAS self-coupling at 80 fb⁻¹ [<u>ATL-PHYS-PUB-2019-009</u>]
 - ATLAS+CMS projections at 3000 fb⁻¹ [<u>1902.00134</u>]
- New results in individual channels are covered in Hangtao's talk [<u>link</u>], Markus's talk [<u>link</u>], Luca's talk [<u>link</u>], and John's talk [<u>link</u>]
- List of channels with STXS results:

ATLAS

CMS

ZZ at 80 fb-1 [ATLAS-CONF-2018-018]ZZ at 140 fb-1 [CMS-PAS-HIG-19-001]γγ at 80 fb-1 [ATLAS-CONF-2018-028]γγ at 80 fb-1 [CMS-PAS-HIG-18-029]bb at 80 fb-1 [1903.04618]ττ at 80 fb-1 [CMS-PAS-HIG-18-032]ττ at 36 fb-1 [1811.08856]WW at 36 fb-1 [CMS-PAS-HIG-16-042]

ATLAS combined at 80 fb⁻¹

Analysis	Integrated luminosity (fb^{-1})
$H \to \gamma \gamma \text{ (including } t\bar{t}H, H \to \gamma \gamma)$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell \text{ (including } t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell)$	79.8
$H \rightarrow WW^* \rightarrow e\nu\mu\nu$	36.1
$H \to \tau \tau$	36.1
$VH, H \to b\bar{b}$	79.8
VBF, $H \to b\bar{b}$	24.5 - 30.6
$H ightarrow \mu \mu$	79.8
$t\bar{t}H, H \to b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$H \rightarrow \text{invisible}$	36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$	36.1

- [ATLAS-CONF-2019-005]
- Reduced Stage 1 inputs except for VBF, H → bb, μμ, invisible and off-shell, which are only used in the κ framework
- ggF signal: Powheg Box NNLOPS, normalised to N³LO QCD with NLO EW corrections
- VBF, VH, (ttH) signal: Powheg Box NLO, normalised to NNLO (NLO) QCD with NLO EW corrections

Global signal strength [ATLAS-CONF-2019-005]

Uncertainty source	$\Delta \mu / \mu ~[\%]$
Statistical uncertainty	4.4
Systematic uncertainties	6.2
Theory uncertainties	4.8
\longrightarrow Signal	4.2
\longrightarrow Background	2.6
Experimental uncertainties (excl. MC stat.)	4.1
\longrightarrow Luminosity	2.0
Background modeling	1.6
Jets, $E_{\rm T}^{\rm miss}$	1.4
Flavour tagging	1.1
\longrightarrow Electrons, photons	2.2
Muons	0.2
au-lepton	0.4
Other	1.6
MC statistical uncertainty	1.7
Total uncertainty	7.6

- $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05$ (stat.) $^{+0.05}_{-0.04}$ (exp.) $^{+0.05}_{-0.04}$ (sig.th.) ± 0.03 (bkg.th.)
- Dominant uncertainties: Signal theory (4.2%), background theory (2.6%), photon (2.2%), luminosity (2%)

STXS results

- Production cross sections assuming SM branching ratio (left) reduced Stage 1 (right)
- All major production modes are now observed with > 5σ, still limited stat in BSM bins

[ATLAS-CONF-2019-005]

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 - 79.8 \text{ fb}^{-1}$ $m_H = 125.09 \text{ GeV}, y_H < 2.5$ $p_{SM} = 89\%$ \rightarrow Total Stat. Syst. SM	$B_{\gamma\gamma}/B_{ZZ}$ $B_{b\overline{b}}/B_{ZZ}$ B_{WW}/B_{ZZ} $B_{\tau^{+}\tau}/B_{ZZ}$		0.86 0.63 0.86 0.87	Total +0.14 -0.12 (+0.35 -0.28 (+0.18 -0.16 (+0.29 -0.24 (Stat. +0.12 -0.11', +0.22 -0.18', +0.13 -0.11', +0.22 -0.19', -0.19', -0.19', -0.19', -0.19', -0.19', -0.11', -0.11', -0.11', -0.11', -0.11', -0.11', -0.12', -0.11', -0.11', -0.12', -0.11', -0.12', -0.11', -0.11', -0.12', -0.18', -0.13', -0.11',	Syst. +0.07 -0.06) +0.27 -0.22) +0.12 -0.11) +0.19 -0.14) -0.14)
				Total	Stat.	Syst.
$gg \rightarrow H$, 0-jet × B_{ZZ}			1.29	+0.18 -0.17 +0.43	(+0.16 (-0.15, +0.37	+0.09 -0.08) +0.23
$gg / H, T get, p_T < 00 GeV \land D_{ZZ}$	<u> </u>		0.57	-0.41 +0.38	(-0.35, +0.33	-0.22 ⁾ +0.18
$gg \rightarrow H$, 1-jet, $60 \le p_T' < 120 \text{ GeV} \times B_Z$	z 🍽		0.87	-0.34	(<u>-0.31</u> ,	-0.15)
$gg \rightarrow H$, 1-jet, $120 \le p_T^H < 200 \text{ GeV} \times B$	zz 뵽		1.30	+0.81 0.72	$\binom{+0.71}{-0.65}$	+0.39 -0.30)
$gg \rightarrow H, \geq 1$ -jet, $p_T^H \geq 200 \text{ GeV} \times B_{ZZ}$	- E		2.05	+0.84 0.72	(^{+0.73} _{-0.64} ,	$^{+0.43}_{-0.32}$
$gg \rightarrow H, \geq 2$ -jet, $p_T^H < 200 \text{ GeV} \times B_{ZZ}$	Ē	ł	1.11	+0.56 -0.51	(^{+0.46} (_{-0.44} ,	+0.32 -0.26)
	••••••					
$qq \rightarrow Hqq$, VBF topo + Rest × B_{ZZ}	E		1.57	+0.45 0.38	(^{+0.36} _{-0.32} ,	+0.27 -0.21)
$qq \rightarrow Hqq$, VH topo × B_{77}			-0.12	+1.35	(+1.31	+0.32
$qq \rightarrow Hqq, p_T^j \ge 200 \text{ GeV} \times B_{ZZ}$			-0.95	-1.13 +1.51 -1.48	(^{+1.34} (^{+1.29} ,	+0.69 -0.72
	••••••					
$qq \rightarrow Hlv, p_T^V < 250 \text{ GeV} \times B_{ZZ}$	H		2.28	+1.24 _1.01	(^{+1.02} (_{-0.85} ,	+0.71
$qq \rightarrow HIv, p_T^V \ge 250 \text{ GeV} \times B_{ZZ}$	He He		I 1.91	+2.32 -1.19	(^{+1.44} _{-1.00} ,	+1.81 -0.66)
gg/qq→HII, p_{τ}^{V} < 150 GeV × B_{77}	·····		0.85	+1.26	(+1.01	+0.76
$aa/aa \rightarrow H_{II}$ 150 < $p^{V} < 250 \text{ GeV} \times B$			0.00	-1.57 +1.29	(-0.98 [,] , +1.02	-1.22/ +0.79
$gg/qq \rightarrow m$, $100 \leq p_T < 200 \text{ GeV} \land D_Z$			0.86	–1.13 ⊥3.03	(_0.90, _1 87	-0.70 ⁾
$gg/qq \rightarrow HII, p_T^{\nu} \ge 250 \text{ GeV} \times B_{ZZ}$	H		 1 2.92	-1.50	(^{+1.07} -1.33 [,]	-0.71)
$ttH + tH \times B_{ZZ}$	ŀ		1.44	+0.39 -0.33	(^{+0.30} _{-0.27} ,	+0.24 -0.19)
					•	
-10 -5	0	Paran	5 neter norr	1 nalize	ບ d to SI	t: א value

CMS combined at 36 fb⁻¹ [1809.10733]

Production process	Best fit value		Uncertainty		
			stat.	syst.	
ggH	1.22	$^{+0.14}_{-0.12} \\ ^{+0.11}_{-0.11})$	$^{+0.08}_{-0.08}$ $\binom{+0.07}{-0.07}$	$^{+0.12}_{-0.10} \\ (^{+0.09}_{-0.08})$	
VBF	0.73	$^{+0.30}_{-0.27}$ $\binom{+0.29}{-0.27}$	$^{+0.24}_{-0.23}$ $\binom{+0.24}{-0.23}$	$^{+0.17}_{-0.15} \\ (^{+0.16}_{-0.15})$	
WH	2.18	$^{+0.58}_{-0.55}$ $\binom{+0.53}{-0.51}$	$^{+0.46}_{-0.45} \\ (^{+0.43}_{-0.42})$	$^{+0.34}_{-0.32} \\ (^{+0.30}_{-0.29})$	
ZH	0.87	$^{+0.44}_{-0.42} \\ (^{+0.43}_{-0.41})$	$^{+0.39}_{-0.38} \\ (^{+0.38}_{-0.37})$	$^{+0.20}_{-0.18} \\ (^{+0.19}_{-0.17})$	
ttH	1.18	$^{+0.30}_{-0.27} \\ (^{+0.28}_{-0.25})$	$^{+0.16}_{-0.16} \\ (^{+0.16}_{-0.15})$	$^{+0.26}_{-0.21} \\ (^{+0.23}_{-0.20})$	

- $\mu = 1.17 \pm 0.10 = 1.11 \pm 0.06$ (stat) $^{+0.06}_{-0.05}$ (sig theo) ± 0.06 (other syst)
- Dominant uncertainties: Signal theory (5%), luminosity (2.5%)
- 50% level improvement compared to Run 1 due to increased cross section, improved theory uncertainty, additional event categories

STXS results

<u>1809.10733</u>

- Stage 0 STXS and branching ratio with respect to ZZ
- bbH is merged to ggH due to the lack of sensitivity
- qqZH and ggZH are merged because they can not easily be separated
- tH is merged to ttH due to the lack of dedicated analysis

Coupling modifiers

<u>ATLAS-CONF-2019-005</u> [<u>1809.10733</u>]

- Generic parametrisation assuming no new particles in loops and decays
- Consistent with SM Yukawa coupling

• Generic parametrisation using effective κ_g and κ_{γ} . In CMS (right), κ_V is allowed to go negative and is close to $-1 \rightarrow |\kappa_V|$ is still close to 1

- The self-coupling contributes at NLO EW corrections via the Higgs self energy loop and additional diagrams (left)
- Constraint on the self-coupling using single Higgs production (right): $-3.2 < \kappa_{\lambda} < 11.9$, sensitivity comparable to HH searches

ATLAS+CMS projections [1902.00134]

- Reduced systematic uncertainties reflecting the situation which is expected at the end of HL-LHC, with negligible mc stat and background function uncertainty, and half theory uncertainty (S2)
- More detail in Jose's talk [link]

Summary

- Combined measurements:
 - Using up to 80 fb⁻¹, reduced Stage 1 STXS are being prepared
 - Dominant uncertainties: Signal theory, background theory, luminosity, photon (Still limited statistics in BSM bins)
- ATLAS self-coupling at 80 fb⁻¹:
 - Sensitivity comparable to HH searches, dedicated kinematic binning including ggH and ttH can improve the sensitivity
- ATLAS+CMS projections:
 - A few% level expected uncertainty on main production cross sections and branching ratios at 3000 fb⁻¹
- Let's get ready for the full Run 2 140 fb⁻¹ results

 B^{π}/B^{Z}

RWW /R

 $B^{\gamma\gamma}/B^2$

16

CMS combined at 36 fb⁻¹ [1809.10733]

Production	n and decay tags	Expected signal composition					
U Voice Continn 21			- VH production with $H \rightarrow bb$, Section 3.5				
$\Pi \rightarrow \gamma \gamma$, section 5.1	Lintersond	74.010/22	$Z(\nu\nu)bb$	ZH leptonic	≈100% VH, 85% ZH		
	Untagged	74-91% ggH	$W(\ell \nu)bb$	WH leptonic	≈100% VH, ≈97% WH		
$\gamma\gamma$	V Dr VU hadronia	51-00 % VDF 25% W/H 15% 7H	$Z(\ell\ell)bb$	Low- $p_{\rm T}({\rm V})$ ZH leptonic	\approx 100% ZH, of which \approx 20% ggZH		
	WH loptonic	64_83% WH		High- $p_{\rm T}({\rm V})$ ZH leptonic	\approx 100% ZH, of which \approx 36% ggZH		
	7H leptonic	98% 7H	Boosted H Production with $H \rightarrow bb$, Section 3.6				
	$VH n^{miss}$	59% VH	$H \rightarrow bb$	$p_{\rm T}({\rm H})$ bins	≈72–79% ggH		
	ttH	80–89% ttH. ≈8% tH	ttH production with H \rightarrow leptons, Section 3.7.1				
$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$. Se	ection 3.2		1	2ℓss	WW/ $\tau\tau \approx 4.5$, $\approx 5\%$ tH		
	Untagged	≈95% ggH		3ℓ	WW : $\tau\tau$: ZZ \approx 15 : 4 : 1, \approx 5% tH		
4µ, 2e2µ/2µ2e, 4e	VBF 1, 2-jet	$\approx 11-47\%$ VBF	$H \rightarrow WW, \tau \tau, ZZ$	4ℓ	WW : $\tau\tau$: ZZ \approx 6 : 1 : 1, \approx 3% tH		
	VH hadronic	≈13% WH, ≈10% ZH		1ℓ + $2 au_{ m h}$	96% ttH with H $\rightarrow \tau \tau$, \approx 6% tH		
	VH leptonic	$\approx 46\%$ WH		$2\ell ss+1\tau_h$	$\tau \tau : WW \approx 5 : 4, \approx 5\% tH$		
	VH $p_{\rm T}^{\rm miss}$	$\approx 56\%$ ZH		$3\ell+1\tau_{\rm h}$	$\tau\tau$: WW : ZZ \approx 11 : 7 : 1, \approx 3% tH		
	ttH	\approx 71% ttH	ttH production with H \rightarrow bb, Section 3.7.2				
$\mathrm{H} \to \mathrm{W}\mathrm{W}^{(*)} \to \ell \nu \ell \nu,$	Section 3.3		1	$t\bar{t} \rightarrow jets$	pprox83–97% ttH with H $ ightarrow$ bb		
011/110	ggH 0, 1, 2-jet	pprox55–92% ggH, up to $pprox$ 15% H $ ightarrow$ $ au$ $ au$	$H \to bb$	$t\bar{t} \rightarrow 1\ell$ +jets	\approx 65–95% ttH with H \rightarrow bb, up to 20% H -		
εμ/με	VBF 2-jet	${\approx}47\%$ VBF, up to ${\approx}25\%$ H ${\rightarrow}$ $\tau\tau$		$t\bar{t} \rightarrow 2\ell$ +jets	\approx 84–96% ttH with H \rightarrow bb		
ee+µµ	ggH 0, 1-jet	≈84–94% ggH	Search for $H \rightarrow uu$,				
eµ+jj	VH 2-jet	22% VH, 21% H $ ightarrow au au$	<u> </u>	S/B bins	56–96% ggH, 1–42% VBF		
3ℓ	WH leptonic	pprox80% WH, up to 19% H $ ightarrow$ $ au au$	Search for invisible H decays Section 3.9				
4ℓ	ZH leptonic	85–90% ZH, up to 14% H $\rightarrow \tau \tau$		VBF	52% VBF 48% ooH		
$H \rightarrow \tau \tau$, Section 3.4	$H \rightarrow \tau \tau$, Section 3.4			agH + > 1 jot	80% ggH 9% VBE		
$e\mu$, $e\tau_h$, $\mu\tau_h$, $\tau_h\tau_h$	0-jet	$pprox$ 70–98% ggH, 29% H $ ightarrow$ WW in e μ	$\mathrm{H} \rightarrow \mathrm{invisible}$	$gg_{11} + \geq 1$ jet	50% ggr1, $7%$ v Dr 54% VIL 20% ccll		
	VBF	\approx 35–60% VBF, 42% H \rightarrow WW in e μ			34% VΠ, 3% ggΠ		
	Boosted	\approx 48–83% ggH, 43% H \rightarrow WW in e μ		ZH leptonic	\approx 100% ZH, of which 21% ggZH		

- ggF signal: Powheg NNLOPS, normalised to N³LO QCD with NLO EW corrections
- VBF, VH, (ttH) signal: Powheg NLO, normalised to NNLO (NLO) QCD with NLO EW corrections