The Future Circular Colliders

Paolo Giacomelli, Michele Selvaggi

> INFN Bologna, CERN

Caveat

Cannot possibly cover all the aspects! A personal selection applied...

The big questions

- What is the origin of Dark Matter / Energy ?
- What is the origin of matter/anti-matter asymmetry ?
- What is the origin of neutrino masses ?
- What is the origin of the Electro-weak symmetry breaking ?
- What is the solution to the hierarchy problem ?

The Standard Model does not provide answers to these questions

There is new physics out there (beyond the Standard Model)

The big questions

- Keep in mind that no single experiment can:
 - explore all directions at once
 - guarantee discovery
- The only possible approach is to design projects that can deliver:
 - precision
 - sensitivity to as many as possible scenarios of new physics
 - clear yes/no answers to concrete scenarios
- HL-LHC will collect data until 2036, and big physics projects take ~20 years time to plan and build, now is the right time top start defining the future of HEP.

HEP needs a future large collider program

The FCC project

Within the FCC collaboration (CERN as host lab), 4 main accelerator facilities have been studied:

- pp-collider (FCC-hh)
 - defines infrastructure requirements
 - $16T \rightarrow 100 \text{ TeV}$ in 100 km tunnel
- ee-collider (FCC-ee):
 - as a (potential) first step
- ep collider (FCC-eh)
- HE-LHC :
 - 27 TeV (16T magnets in LHC tunnel)

CDRs and European Strategy documents have been made public in Jan. 2019

https://fcc-cdr.web.cern.ch/

A common layout for FCC-ee/hh

FCC-ee

Energies and Luminosities

The FCC-ee offers the largest luminosities in the 88 \rightarrow 365 GeV \sqrt{s} range

FCC-ee operations

FCC-ee experiments

<u>CLD</u>

- Consolidated option based on the detector design developed for CLIC
 - All silicon vertex detector and tracker
 - D-imaging highly-granular calorimeter system
 - Coil outside calorimeter system
- Proven concept, understood performance

IDEA

- New, innovative, possibly more cost-effective design
 - Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - Thin and light solenoid coil inside calorimeter system

Physics potential of FCC-ee

EXPLORE the 10-100 TeV energy scale

- With precision measurements of the properties of the Z, W, Higgs, and top particles
 - 20-50 fold improved precision on ALL electroweak observables (EWPO)
 - \rightarrow m_Z, Γ_{Z} , m_W, m_{top}, sin² θ_{w}^{eff} , R_b, α_{QED} (m_z), α_{s} (m_z), top EW couplings ...
 - 10 fold more precise Higgs couplings measurements
 - \twoheadrightarrow Break model dependence with $\Gamma_{\rm H}$ accurate measurement

DISCOVER that the Standard Model does not fit

- Then extra weakly-coupled and Higgs-coupled particles exist
- Understand the underlying physics through effects via loops
- DISCOVER a violation of flavour conservation / universality
 - e.g., with $B^o \to K^{*0}\tau^+\tau^-$ or $B_S \to \tau^+\tau^-$ in 10¹² bb events
- DISCOVER dark matter as invisible decays of Higgs or Z
- DISCOVER very weakly coupled particles in the 5-100 GeV mass range
 - Such as right-handed neutrinos, dark photons, ...
 - May help understand dark matter, universe baryon asymmetry, neutrino masses

Electro-Weak observables

Observable	Measurement	Current precision	FCC-ee stat.	Possible syst.	Challenge
m _z (MeV)	Lineshape	91187.5 ± 2.1	0.005	< 0.1	QED corr.
Г <mark>z</mark> (MeV)	Lineshape	2495.2 ± 2.3	0.008	< 0.1	QED / EW
R _I	Peak	20.767 ± 0.025	0.001	< 0.001	Statistics
R _b	Peak	0.21629 ± 0.00066	0.000003	< 0.00006	g ightarrow bb
N_{v}	Peak	2.984 ± 0.008	0.00004	< 0.004	Lumi meast
$sin^2 \theta_w^{eff}$	A _{FB} ^{μμ} (peak)	0.23148 ± 0.00016	0.000003	<0.000005	Beam energy
$1/lpha_{ extsf{QED}}(extsf{m}_{ extsf{z}})$	A _{FB} ^{μμ} (off-peak)	128.952 ± 0.014	0.004	< 0.004	QED / EW
α _s (m _z)	R _I	0.1196 ± 0.0030	0.00001	<0.0002	New Physics
m _w (MeV)	Threshold scan	80385 ± 15	0.6	< 0.6	EW Corr.
$\Gamma_{ m w}$ (MeV)	Threshold scan	2085 ± 42	1.5	<1.5	EW Corr.
N_{v}	$e^+e^- \rightarrow \gamma Z, Z \rightarrow \nu \nu, II$	2.92 ± 0.05	0.001	< 0.001	?
$lpha_{\sf s}({\sf m}_{\sf W})$	$B_{had} = (\Gamma_{had}/\Gamma_{tot})_W$	B _{had} = 67.41 ± 0.27	0.00018	< 0.0001	CKM Matrix
m _{top} (MeV)	Threshold scan	173340 ± 760 ± 500	20	<40	QCD corr.
Γ_{top} (MeV)	Threshold scan	?	40	<40	QCD corr.
λ_{top}	Threshold scan	μ = 1.2 ± 0.3	0.08	< 0.05	QCD corr.
ttZ couplings	√s = 365 GeV	~30%	~2%	<2%	QCD corr

Astounding level of precision achievable of Electro-Weak observables at the FCC-ee

Higgs @ FCC-ee

• Higgs tagged by a Z, Higgs mass from Z recoil e^+ Z (H_{-}) e^- Z (H_{-}) $m_H^2 = s + m_Z^2 - 2\sqrt{s(E_+ + E_-)}$

- I0⁶ Higgs produced @ FCC-ee
- rate ~ $g_{HZZ}^2 \rightarrow \delta g_{HZZ}/g_{HZZ} \sim 0.1 \%$
- Then measure $ZH \rightarrow ZZZ$
- rate ~ g_{HZZ} ⁴ / $\Gamma_{H} \rightarrow \delta \Gamma_{H}$ / $\Gamma_{H} \sim 1$ %
- Then measure $ZH \rightarrow ZXX$
- rate ~ $g_{HZZ}^2 g_{HXX}^2 / \Gamma_H \rightarrow \delta g_{HXX} / g_{HXX} ~ | \%$

Direct measurement of Higgs width removes model dependence !!

m_{Recoil} (GeV)

Higgs couplings

Collider	HL-LHC	ILC_{250}	CLIC ₃₈₀	LEP3240	$CEPC_{250}$		FCC-ee ₂₄₀	0+365
Lumi (ab ⁻¹)	3	2	1	3	5	5_{240}	$+1.5_{365}$	+ HL-LHC
Years	25	15	8	6	7	3	+4	
$\delta\Gamma_{\rm H}/\Gamma_{\rm H}$ (%)	SM	3.6	4.7	3.6	2.8	2.7	1.3	1.1
$\delta g_{\mathrm{HZZ}}/g_{\mathrm{HZZ}}$ (%)	1.5	0.3	0.60	0.32	0.25	0.2	0.17	0.16
$\delta g_{\rm HWW}/g_{\rm HWW}$ (%)	1.7	1.7	1.0	1.7	1.4	1.3	0.43	0.40
$\delta g_{ m Hbb}/g_{ m Hbb}$ (%)	3.7	1.7	2.1	1.8	1.3	1.3	0.61	0.56
$\delta g_{ m Hcc}/g_{ m Hcc}$ (%)	SM	2.3	4.4	2.3	2.2	1.7	1.21	1.18
$\delta g_{ m Hgg}/g_{ m Hgg}$ (%)	2.5	2.2	2.6	2.1	1.5	1.6	1.01	0.90
$\delta g_{\rm HTT}/g_{\rm HTT}$ (%)	1.9	1.9	3.1	1.9	1.5	1.4	0.74	0.67
<i>δg</i> нµµ/ <i>g</i> нµµ (%)	4.3	14.1	n.a.	12	8.7	10.1	9.0	3.8
$\delta g_{\rm H} \gamma \gamma / g_{\rm H} \gamma \gamma$ (%)	1.8	6.4	n.a.	6.1	3.7	4.8	3.9	1.3
$\delta g_{ m Htt}/g_{ m Htt}$ (%)	3.4	-	-	-	-	-	-	3.1
BR_{EXO} (%)	SM	< 1.7	< 2.1	< 1.6	< 1.2	< 1.2	< 1.0	< 1.0

• The FCC-ee precision better than HL-LHC by large factors (for the copious modes)

- The FCC-ee is best on the e⁺e⁻ Higgs factory market
- It is important to have two energy points (240 and 365 GeV), as at the FCC-ee
 - Combination better by a factor up to 2 (4) than 240/250 (365/380) GeV alone

The FCC-ee provides the most precise measurement of Higgs couplings among all proposed future e⁺e⁻ families

FCC-hh

The FCC-hh

- Circumference = 100 km
- Need dipoles that generate B = 16 T (Need R&D)

/	
$= 2 \sqrt{r}$	IeV
VU	

- 8 GJ kinetic energy per beam
- Airbus A380 at 720 km/h
- 2000 kg TNT
- O(20) times LHC

	FCC-hh Initial	FCC-hh Ultimate
Luminosity L [10 ³⁴ cm ⁻² s ⁻¹]	5	20-30
Background events/bx	170 (34)	<1020 (204)
Bunch distance ∆t [ns]	25	5 (5)
Bunch charge N [10 ¹¹]	1 (0.2)	
Fract. of ring filled η_{fill} [%]	80	
Norm. emitt. [µm]	2.2(0.44)	
Max ξ for 2 IPs	0.01 (0.02)	0.03
IP beta-function β [m]	1.1	0.3
IP beam size σ [μ m]	6.8 (3) 3.5 (1.6)	
RMS bunch length σ_{z} [cm]	8	
Crossing angle [$\sigma\Box$]	12	Crab. Cav.
Turn-around time [h]	5	4

In its high luminosity phase, FCC-hh produces **1000 PU interactions** per bunch crossing

Int. Iuminosity 30 ab⁻¹

FCC-hh in a nutshell

- Ultimate discovery machine
 - directly probe new physics up to unprecedented scale
 - discover/exclude:

-	heavy resonances	"strong"	m(q*)	pprox 50 TeV,
		"weak"	m(Z')	pprox 40TeV,
-	SUSY		m(gluino)	pprox 15 TeV,
			m(stop).	\approx 10 TeV

- Precision machine
 - probe Higgs self-coupling to few % level, and %-level precision for top Yukawa and 2nd generation.
 - measure **SM parameters** with high precision
 - exploit complementarity with e⁺e⁻ by probing high dim.operators (EFT) in extreme kinematic regimes (boosted)

Physics program spans over very wide range of energy scales !

An FCC-hh detector

- Must be able to cope with:
 - very large dynamic range of signatures (E = 20 GeV -20 TeV)
 - hostile environment (Ik pile-up and up to 10¹⁸ cm⁻² MeV neq fluence)
- Characteristics:
 - large acceptance (for low pT physics)
 - extreme granularity (for high pT and pile-up rejection)
 - timing capabilities
 - radiation hardness

The FCC-hh detector

Higgs at the FCC-hh

- FCC-hh provides unique and complementary measurements to FCC-ee:
 - Higgs self-coupling
 - top Yukawa
 - rare decays (BR(μμ), BR(Zγ), ratios, ..) measurements will be statistically limited at FCC-ee
- Assuming, we know production xsec and luminosity, at pp colliders we measure BR(i) = Γ_i / Γ_H

 $N = \sigma \mathcal{L} = \mathcal{L} * \sigma_{prod} * BR(i)$

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δg_{Hbb} / g_{Hbb} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	—	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.91 (*)
δg _{ннн} / g _{ннн} (%)	50	~30 (indirect)	7
BR _{exo} (95%CL)	BR _{inv} < 2.5%	<1%	BR _{inv} < 0.025%

 By performing measurements of ratios of BRs, FCC-ee allows to "convert" relative measurements into absolute via HZZ (standard candle)

- Naively, factor 20 smaller statistical uncertainty
- Can study a number of final states
 - bbyy most sensitive channel

combining all channels 20

 $\delta k_{\lambda} / k_{\lambda} = 5 \%$

1.05

1.1 1.15

 $k_{\lambda} = \lambda_{obs} / \lambda_{SM}$

1

0.85 0.9 0.95

0.8

Summary Higgs measurements

	HL-LHC	FCC-ee	FCC-hh
δГн / Гн (%)	SM	1.3	tbd
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17	tbd
δднww / днww (%)	1.7	0.43	tbd
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61	tbd
δg _{Hcc} / g _{Hcc} (%)	~70	1.21	tbd
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01	tbd
δg _{Ηττ} / g _{Ηττ} (%)	1.9	0.74	tbd
δg _{Hµµ} / g _{Hµµ} (%)	4.3	9.0	0.65 (*)
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9	0.4 (*)
δg _{Htt} / g _{Htt} (%)	3.4	—	0.95 (**)
δg _{HZγ} / g _{HZγ} (%)	9.8	—	0.91 (*)
δдннн / дннн (%)	50	~30 (indirect)	7
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%	BR _{inv} < 0.025%

Perfect complementarity between FCC-ee and FCC-hh !!!

What can the FCC-hh say about BSM physics

Exploration potential:

- New machines are built to make discoveries!
- Mass reach enhanced by factor $\sqrt{s/14\text{TeV}}$ (5-7 at 100TeV)
- Statistics enhanced by several orders of magnitude for possible BSM seen at HL-LHC
- Benefit from both direct (large Q^2) and indirect precision probes

Could provide answers to questions such as:

- Is the SM dynamics all there at the TeV scale?
- Is there a TeV-Scale solution the hierarchy problem?
- Is Dark Matter a thermal WIMP?
- Was the cosmological EW phase transition 1st order? Cross-over?
- Could baryogenesis have taken place during EW phase transition?

Conclusions - I

HEP Landscape

G. Giudice

- Particle accelerators are built to answer some of the most fundamental questions about the natural world
- Physics priorities are likely to shift swiftly, as we advance in our exploration, both experimentally and theoretically
- There are many unknowns ahead of us that may reshuffle the cards (e.g. any discoveries of HL-LHC)
- \rightarrow We need a broad and bold program capable of adapting to the swift changes in the physics landscape that are likely to happen
- \rightarrow 100TeV hadron collider In times of uncertainty, bold exploration is the way to go

Complementary and synergetic with a high luminosity e+e- machine such as the FCC-ee

Conclusions - 2

Future of HEP

The FCC design study has established the feasibility of an ambitious set of colliders after LEP/LHC, at the cutting edge of knowledge and technology

Let's make this happen !

High Field Dipoles Magnets (16T)

- Nb-Ti not suited anymore (4-10T)
- Focus on Nb3Sn (also HLLHC)

Goal: $Jc = 1500 \text{ A/mm}^2 @ 4.2 \text{ K}$

 High Temperature Superconductors (Bi-2212) are promising, but stress sensitive, also low current density (but constant)

Many challenges:

- Need margin B ~ 20 T
- Conductor instabilities
- NbSn3 stress sensitivity ...
- Cost?

How long? Manageable in ~ 15-20 yrs?

The FCC project (rationale)

- HL-LHC data-taking ends in 2035
- Build a 100 km tunnel
- If magnets are ready by ~ 2040 go for FCC-hh
- If not FCC-ee ~20 yrs
- then FCC-hh ~20 yrs

Domain	Cost in MCHF
Stage 1 - Civil Engineering	5,400
Stage 1 - Technical Infrastructure	2,200
Stage 1 - FCC-ee Machine and Injector Complex	4,000
Stage 2 - Civil Engineering complement	600
Stage 2 - Technical Infrastructure adaptation	2,800
Stage 2 - FCC-hh Machine and Injector complex	13,600
TOTAL construction cost for integral FCC project	28,600

~I espresso/year/person

100 km tunnel ensures HEP field activities for \sim 60 yrs

- FCC-ee \rightarrow FCC-hh \rightarrow FCC-xx (x= μ)
- Long term accelerator complex easier to fund on flat budget

Constraints from the machine

• L* = 45 m

- Distance between triplet and IP
- determines overall longitudinal size of detector

Detector layout

Subdetectors

Tracker

- -6 < η < 6 coverage
- pixel : $\sigma_{r\varphi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, X/X₀(layer) ~ 0.5-1.5%
- outer : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 30-100 \mu m$, X/X₀(layer) ~ 1.5-3%

forward (FCal)

Calorimeters

- ECAL: LArg , $30X_0$, 1.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci , 9 λ , r = 2.8 4.8 m (barrel)
- endcaps and fwd to be defined (investigating HGCAL ...)

Magnet

central R = 5, L = 10 m, B = 4T

end-cap (HEC)

LAT

• forward R = 3m, L = 3m, B = 4T

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

30

1 MeV neutron equivalent fluence for 30 ab^{-1}

Charged particle fluence rate for $L=30\cdot 10^{34} \text{cm}^{-2} \text{s}^{-1}$

Tracker:

first IB layer (2.5 cm): $\sim 12 \text{ GHz cm}^{-2}$

Stray field and service cavern

Subdetectors

 \rightarrow

35

LAr electromagnetic calorimeter

• Much more granular than ATLAS calorimeter $(\times 10)$.

- High longitudinal and lateral segmentation possible with straight, multilayer electrodes.
- Huge impact of pile-up in calorimeter standalone measurement need to subtract pile-up using pile-up track identification.

Trigger

Example: ATLAS Phase-II:

- Calorimetry will be digitized at 40 MHz and sent via optical fibers to L1 electronics outside the cavern at **25 TB/s** to create the L1 Trigger.
- Muon system will also be read out at 40 MHz to produce a L1 Trigger.

FCC-hh detector:

- Reading out the FCC detector calorimetry and muon system at 40 MHz result in **200-300 TB/s**: seems feasible.
- Can the L1 Calo+Muon Trigger have enough selectivity to allow readout of the tracker at a reasonable rate of e.g. 1 MHz ?
 - Reading tracker at 40 MHz results in $\sim 800 \text{ TB/s}$.
 - $\circ~$ Untriggered detector readout at 40 MHz would result in over 1~PB/s over optical links to the underground service cavern and/or a HLT computing farm on the surface.

Hadronic barrel calorimeter

- ATLAS-like tile calorimeter with scintillating tiles/WLS fibres + stainless steel and lead (1: 3.3:1.3)
- SiPM readout: faster, less noise, less space
- 3-4 times higher granularity in $\Delta\eta\Delta\varphi=0.025\times0.025$ and 10 layers
- For containment of multi-TeV jets (98%): ECAL + HCAL depth $\sim 11\lambda$ at $\eta = 0$. jet resolution

Muon chambers

- FCC Tracker

- FCC Muon standalone 70uRad Angular Resolution
- FCC Combined M.S. Limit
- FCC combined 25um Muon Position Resolution
- FCC combined 50um Muon Position Resolution
- FCC combined 100um Muon Position Resolution

Precision vs. sensitivity

- We often talk about "precise" SM measurements. What we actually aim at is "sensitive" tests of the Standard Model, where sensitive refers to the ability to reveal BSM behaviours.
- Sensitivity may not require extreme precision. Going after "sensitivity", rather than just precision, opens itself new opportunities .
- For example, in the context of dim. 6 operators in EFT, some operators grow with energy:

BR measurement:
$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2 \Rightarrow \text{precision probes large } \Lambda$$

e.g. $\delta O = 1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$
 $\sigma(\text{pT} > X): \qquad \delta O \sim \left(\frac{Q}{\Lambda}\right)^2 \Rightarrow \text{kinematic reach probes large } \Lambda$

e.g. $\delta O=15\%$ at Q=1 TeV $\Rightarrow \Lambda \sim 2.5$ TeV

Reach @100TeV

events = $\sigma \mathcal{L}$ $\sigma \approx \sigma$ (part) L

$$\sigma \approx (s / M^{2+2/a})^a$$

Reach of collider at $\sqrt{s_1}$ vs $\sqrt{s_2}$:

 $(M_2 / M_1) \sim (s_2 / s_1)^{1/2} [(s_1/s_2)(\mathcal{L}_2/\mathcal{L}_1)]^{1/(2a+1)}$

At high mass (high x), a >> I:

Mass reach goes up by factor 7 (roughly)

Ratio parton-luminosity

Indicates how rate of given process (e.g. single Higgs production) scales from 14 TeV to 100 TeV:

$$\frac{\text{\# events } (\sqrt{s} = 100 \text{ TeV})}{\text{\# events } (\sqrt{s} = 14 \text{ TeV})} \approx L_1 / L_2 \approx (s_2/s_1)^a \approx (100/14)^{2a}$$

Rates at 100 TeV

Huge statistics allow for great potential of further exploration of SM particles at 100 TeV

Kinematics @ 100 TeV

Physics is more forward @100TeV

- less for "high pT" physics
- more for "low pT" physics (W/Z/Higgs, top)
- in order to maintain sensitivity in need
 large rapidity (with tracking) and low pT
 coverage

→ 1k pile-up will certainly be an issue at large rapidities

 $x_1 * x_2 * s = M^2$

Why Higgs at the FCC-hh?

- Huge Higgs production rates:
 - access (very) rare decay modes
 - push to %-level Higgs self-coupling measurement
- Large dynamic range for H production (in p_T^H , m(H+X), ...):
 - new opportunities for reduction of syst uncertainties (TH and EXP)
 - different hierarchy of production processes
 - · develop indirect sensitivity to BSM effects at large Q^2 , complementary to that emerging from precision studies (e.g. decay BRs) at $Q \sim m_H$
- High energy reach:
 - direct probes of BSM extensions of Higgs sector (e.g. SUSY)
 - Higgs decays of heavy resonances
 - Higgs probes of the nature of EW phase transition (strong 1st order? crossover?)

Single Higgs production @FCC-hh

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
ggH (N ³ LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

Expected improvement at FCC-hh:

- 20 billion Higgses produced at FCC-hh
- factor 10-50 in cross sections (and Lx10)
- reduction of a factor 10-20 in statistical uncertainties

Large statistics will allow:

- for % level precision in statistically limited rare channels $(\mu\mu, Z\gamma)$
- in systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs p_T) with :
 - higher S/B
 - smaller (relative) impact of systematic uncertainties

$$\begin{split} N_{100} &= \sigma_{100 \, \text{TeV}} \times 20 \, \text{ab}^{-1} \\ N_8 &= \sigma_{8 \, \text{TeV}} \times 20 \, \text{fb}^{-1} \\ N_{14} &= \sigma_{14 \, \text{TeV}} \times 3 \, \text{ab}^{-1} \end{split}$$

	N_{100}	N_{100}/N_8	N_{100}/N_{14}
$gg \to H$	16×10^9	4×10^4	110
VBF	1.6×10^9	5×10^4	120
WH	3.2×10^8	2×10^4	65
ZH	2.2×10^8	$3 imes 10^4$	85
$t\bar{t}H$	$7.6 imes 10^8$	3×10^5	420

reduction in stat. unc.

Systematics assumptions on Higgs couplings

- I% systematics on (production x luminosity), meant as a reference target. Assumes good theoretical progress over the next years, and reduction of PDF+α_s uncertainties with HL-LHC + FCC-ee.
- e/µ/γ efficiency systematics shown on the right. Conservative ~ today. In situ calibration, with the immense available statistics in possibly new clean channels (Z→µµγ), will most likely reduce the uncertainties.
- All final states considered here rely on reconstruction of m_H to within few GeV. Backgrounds (physics and instrumental) to be determined with great precision from sidebands (~ infinite statistics)
- Impact of pile-up: hard to estimate with today's analyses. Focus
 on high-p_T objects will help to decrease relative impact of pile-up
- Assume (un-)correlated uncertainties for (different) same final state objects
- Following scenarios are considered:

Ratios of BRs

- measure ratios of BRs to cancel correlated sources of systematics:
 - luminosity
 - object efficiencies
 - production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with $H \rightarrow ZZ$ measurement from e^+e^- (at 0.2%)

Higgs decays ($\mu\mu$ and Z(II) γ)

- study sensitivity as a function of minimum p_T(H)
 requirement in the γγ, ZZ(4I), μμ and Z(II)γ channels
- low pT(H): small stat. and high syst. unc.
- large pT(H): high stat. and small syst. unc.
- O(1-2%) precision on BR achievable up to very high pT (means 0.5-1% on the couplings)

- 1% lumi + theory uncertainty
- p_T dependent object efficiency:
 - $\delta\epsilon(e/\gamma) = 0.5 (1)\%$ at $p_T \rightarrow \infty$
 - $\delta\epsilon(\mu) = 0.25 \ (0.5)\%$ at $p_T \rightarrow \infty$

50

H→invisible

- Measure it from H + X at large $p_T(H)$
- Fit the ET^{miss} spectrum
- Estimate $Z \rightarrow vv$ from $Z \rightarrow ee/\mu\mu$ control regions.
- Constrain background p_T spectrum from $Z \rightarrow VV$ to the % level using NNLO QCD/EW to relate to measured Z,W and γ spectra
- BR(H \rightarrow inv) $\approx 2.5 \ 10^{-4}$

The nature of the EW phase transition

Strong Ist order phase transition is required to induce and sustain the out of equilibrium generation of a baryon asymmetry during EW symmetry breaking

Strong Ist order phase transition $\Rightarrow \langle \Phi_C \rangle > T_C$

This requires O(I) deviations in the 3rd derivative of the Higgs potential w.r.t to value predicted in the SM

Probe the existence of other particles coupled to the Higgs

Higgs production @ high pt

- will have at disposal, $o(10^6)$ Higgs bosons at $p_T(H) > 1$ TeV
- ttH (VBF) overcomes ggH at $p_T > 800$ (2000) GeV, distinctive signatures can be used
- Higgs pT spectrum is an indirect probe for new physics modifying, e.g. ggH coupling
 - heavy states running in the loop
 - complementary to Hgg measurement in e+ e-

Higgs self-coupling at FCC-hh

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta k_{\lambda\, /}\, k_{\lambda} \approx \, 50\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40$ (and Lx10)
 - x400 in event yields and x20 in precision
- main channels studied:
 - bbyy (most sensitive discussed here)
 - bbZZ(4I) (in backup)
 - bbbbj (boosted) (in backup)
- Two very sensitive channels not considered yet:
 - $bb\tau\tau (\delta k_{\lambda/} k_{\lambda} \approx 8\% \text{ from } [1802.01607])$
 - 4b

HH →bb4l

- New channel opening at FCC-hh !!
- clean channel with mostly reducible backgrounds (single Higgs)
- Simple cut and count analysis on (4e, 4μ and $2e2\mu$ channels)
- $\delta k_{\lambda} / k_{\lambda} = 15-20\%$ depending on systematics assumptions

Summary direct measurements

Observable	Parameter	Precision (stat.)	Precision (stat.+syst.+lumi.)
$\mu = \sigma(H) \times B(H \to \gamma \gamma)$	δμ/μ	0.1%	1.45%
$\mu = \sigma(H) \times B(H \to \mu\mu)$	$\delta \mu / \mu$	0.28%	1.22%
$\mu = \sigma(H) \times B(H \to 4\mu)$	δμ/μ	0.18%	1.85%
$\mu = \sigma(H) \times B(H \to \gamma \mu \mu)$	δμ/μ	0.55%	1.61%
$\mu = \sigma(HH) \times B(H \to \gamma\gamma) B(H \to b\bar{b})$	δλ/λ	5%	7.0%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \to \mu\mu\gamma)/B(H \to \mu\mu)$	$\delta R/R$	0.58%	1.82%
$R = \sigma(t\bar{t}H) \times B(H \to b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \to b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	<i>B@</i> 95%CL	1×10 ⁻⁴	2.5×10 ⁻⁴

- Percent level precision on $\sigma \times BR$ in most rare decay channels
- Percent level precision on BRs if HZZ coupling known from FCC-ee (to 0.2%)

One should not underestimate the value of FCC-hh standalone precise "ratios-of-BRs" measurements:

- independent of α_s , m_b , m_c , Γ_{inv} systematics
- sensitive to BSM effects that typically influence BRs in different ways:

HH \rightarrow 4b+j boosted

- Large rates allow to look for boosted HH recoiling against a jet (low m_{нн} drives the sensitivity)
- relies on identification two boosted Higgs-jets
- fit the di-jet mass spectrum dominated by the large QCD background
- $\delta k_{\lambda} / k_{\lambda} = 20-40\%$ depending on assumed background rate

Vector Boson Scattering

- Sets constraints on detector acceptance (fwd jets at $\eta \approx 4$)
- Study W+'-W+'- (same-sign) channel
- Large WZ background at FCC-hh
- + 3-4% precision on W_LW_L scattering xsec. achievable with full dataset
- Indirect measurement of HWW coupling possible, $\delta\kappa_{\rm W}/\kappa_{\rm W}\approx 2\%$

W

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_L W_L \rightarrow HH$ process.

$m_{l^+l^+}$ cut	$> 50~{ m GeV}$	$> 200~{ m GeV}$	$> 500~{ m GeV}$	> 1000 GeV
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]

large mww

[1002.1011]

W

$W_L W_L \rightarrow HH$

With c_V from FCC-ee, $\delta c_{2V} < 1\%$

Top Yukawa (production)

- production ratio $\sigma(ttH)/\sigma(ttZ)$
- predicted to **1%** precision [1507.08169]
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the **semi-leptonic** channel
- perform simultaneous fit of double Z and H peak
- measure y_t to |%|

ttH

Detector requirements from high p_T searches

- Change in paradigm: heavy flavour tagging
- multi-TeV b-Hadrons decay outside the pixel volume
- Need to adapt identification algorithms for maintaining sensitivity in in high mass searches.

• displaced vertices

- Tracking target : achieve $\sigma / p = 10-20\%$ @10 TeV
- Keep calorimeter **constant term** as small as possible.
- Long-lived particles live longer:

ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying

 \rightarrow re-think reconstruction, include **dE/dx** ?

Require **high granularity** (both in tracker and <u>calos</u>):

ex: W(10 TeV) will have decay products separated by DR = 0.01

Heavy resonances @ 100 TeV

- M = I TeV Higgsino can be discovered
- M = 3 TeV Wino can be discovered

Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong Ist order EWPT needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

MSSM Higgs

N. Craig, J. Hajer, Y.-Y. Li, T. Liu, H. Zhang, J. arXiv: 1605.08744 a

J. Hajer, Y.-Y. Li, T. Liu, and J. F. H. Shiu, arXiv:1504.07617

Minimal stealthy model for a strong EW phase transition: the most challenging scenario for discovery

$$V_0 = -\mu^2 |H|^2 + \lambda |H|^4 + rac{1}{2} \mu_S^2 S^2 + \lambda_{HS} |H|^2 S^2 + rac{1}{4} \lambda_S S^4$$

Unmixed SM+Singlet. No exotic H decay, no H-S mixing, no EWPO, ...

Two regions with strong EWPT

Only Higgs Portal signatures: $h^* \rightarrow SS$ direct production Higgs cubic coupling $\sigma(Zh)$ deviation (> 0.6% @ TLEP)

⇒ Appearance of first "no-lose"

arguments for classes of compelling scenarios of new physics

HH →bbγγ

- Large QCD backgrounds (jjγγ and γ+jets)
- Main difference w.r.t LHC is the very large ttH background
- Strategy:
 - exploit correlation of means in $(m_{\chi\chi}, m_{hh})$ in signal
 - build a parametric model in 2D
 - perform a 2D Likelihood fit on the coupling modifier k_λ
 - $\delta k_{\lambda} / k_{\lambda} = 5-7\%$ (stat stat+syst.) in this channel alone

$\delta k_{\lambda} / k_{\lambda} = 5$ % by combining with other channels

Disappearing Tracks

- Observed relic density of Dark Matter •
 - Higgsino-like: ITeV,
 - Wino-like: 3TeV
- Mass degeneracy: wino 170MeV, Higgsino 350MeV •
 - disappearing track signature

FCC-hh can explore conclusively EW charged WIMP models, (low multiplets)

Discovery significance

18⊦

16

14E

12⊢

10E

8F

20 FCC-hh, √s = 100 TeV, 30 ab⁻¹

Wino