Physics Perspective at Future Lepton Colliders

Jorge de Blas University of Padova & INFN-Sezione di Padova

Based on the results presented in:

Higgs Boson Studies at Future Particle Colliders (arXiv:1905.03764 [hep-ph])

J.B., M. Cepeda, J. D'Hondt, R. K. Ellis, C. Grojean, B. Heinemann, F. Maltoni, A. Nisati, E. Petit, R. Rattazzi and W. Verkerke

J.B., G. Durieux, C. Grojean, J. Gu, A. Paul, In preparation

and the results presented at the "Open Symposium of the European Strategy for Particle Physics, Granada, May 13-16, 2019

7th Edition of the Large Hadron Collider Physics Conference LHCP 2019

Puebla, May 24, 2019

Future Lepton Colliders

Physics at Lepton Colliders

 What kind of measurements/physics can be done at lepton colliders?

 What can we learn from these measurements? (What questions can be asked at lepton colliders?)

Physics at Lepton Colliders

- What kind of measurements/physics can be done at lepton colliders?
 - Precision measurements: EW/Higgs/Top
 - The Higgs factory option is an integral part of the physics program at all future lepton collider projects
- What can we learn from these measurements? (What questions can be asked at lepton colliders?)

Precision Higgs Physics at Lepton vs. Hadron Collider

Hadron Collider Higgs

O(1-10%) precision but model-dependent (BR_{NP}=0)

Ratios, no absolute couplings

(only possible at lepton colliders)

Translates ratios into couplings

Precision Higgs Physics at Lepton vs. Hadron Collider

Hadron Collider Higgs

O(1-10%) precision but model-dependent (BR_{NP}=0)

Ratios, no absolute couplings

Lepton Collider Higgs

\sqrt{s} (GeV)	24	10	365					
Luminosity (ab^{-1})	5	5	1.5					
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$				
$H \rightarrow any$	± 0.5		± 0.9					
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9				
$\mathrm{H} \to \mathrm{c}\bar{\mathrm{c}}$	± 2.2		± 6.5	±10				
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5				
$H \rightarrow W^+ W^-$	± 1.2		± 2.6	± 3.0				
$H \rightarrow ZZ$	± 4.4		± 12	±10				
$H\to\tau\tau$	± 0.9		± 1.8	± 8				
$\mathrm{H} \to \gamma \gamma$	± 9.0		± 18	± 22				
$ ~{\rm H} \rightarrow \mu^+ \mu^-$	± 19		± 40					
$H \rightarrow invis.$	< 0.3		< 0.6					

Sub-percent precision in Higgs rates

Precision EW Physics at Lepton Colliders

Many other precision measurements in the EW sector

Jorge de Blas

INFN - University of Padova

Separation of EW/Higgs (& Top/Flavor/...) is "artificial" from the BSM point of view. EFT description of (heavy) new physics $\mathcal{L}_{\text{Eff}} \stackrel{e^+e^- \to \text{hadrons}}{= \sum_{d=4}^{\infty} \frac{1}{\Lambda^{d-4}} \mathcal{L}_d = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_5 + \frac{1}{\Lambda^2} \mathcal{L}_6 + \cdots$ $v^2 B^{\mu\nu} W^3_{\mu\nu}$ Modifies neutral gauge **EWPO** boson self-energies (dim 4) $\phi^{\dagger}\sigma_{a}\phi B^{\mu\nu}W^{a}_{\mu\nu}$ CESR DORIS $\mathcal{O}_{\phi WB}$ PEP $vhB^{\mu\nu}W^3_{\mu\nu}$ $h \to ZZ, \gamma\gamma$ Higgs phys. PETRA RISTAN **SLC EWSB** KEKB PEP-II (dim 5) LEP I LEP II

 $\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$

Global EFT fit to EW/Higgs at Future Lepton Colliders

Sub-percent precision expected in main Higgs couplings

JB, G. Durieux, C. Grojean, J. Gu, A. Paul, In preparation

<u>CEPC/FCC-ee:</u> Z-pole run largely decouples EWPO and Higgs fits

ILC: precision of *HZZ* limited by absence of Z-pole run (Could be mitigated by using rad. return EWPO, or at 500 GeV)

<u>CLIC:</u> High-E run compensate the absence of *Z*-pole run (<u>for *HZZ*</u>)

Jorge de Blas INFN - University of Padova

JB, G. Durieux, C. Grojean, J. Gu, A. Paul, In preparation

<u>CEPC/FCC-ee:</u> Z-pole run largely decouples EWPO and Higgs fits

ILC: precision of *HZZ* limited by absence of Z-pole run (Could be mitigated by using rad. return EWPO, or at 500 GeV)

<u>CLIC:</u> High-E run compensate the absence of *Z*-pole run (<u>for *HZZ*</u>)

Jorge de Blas INFN - University of Padova

Important to test the SM structure of the Higgs potential + implications for BSM questions: EW Baryogenesis

High Energy probes of new physics

• e.g. growing with energy-effects in 2 \rightarrow 2 fermion processes:

Physics at Lepton Colliders

- What kind of measurements/physics can be done at lepton colliders?
 - Precision measurements: EW/Higgs/Top

The Higgs factory option is an integral part of the physics program at all future lepton collider projects

 What can we learn from these measurements? (What questions can be asked at lepton colliders?)

e.g. Naturalness: Is the Higgs a composite particle?

(Others: Dark Matter, extended gauge sectors, ...) See also A. Wulzer's plenary talk

Indirect sensitivity to Composite Higgs (CH) via SILH Lagrangian:

$$\begin{split} \mathcal{L}_{\mathrm{SILH}} = & \frac{c_{\phi}}{\Lambda^2} \frac{1}{2} \partial_{\mu} (\phi^{\dagger} \phi) \partial^{\mu} (\phi^{\dagger} \phi) + \frac{c_T}{\Lambda^2} \frac{1}{2} (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) (\phi^{\dagger} \overleftrightarrow{D}^{\mu} \phi) - \frac{c_6}{\Lambda^2} \lambda (\phi^{\dagger} \phi)^3 + \left(\frac{c_{y_f}}{\Lambda^2} y_{ij}^f \phi^{\dagger} \phi \psi_{Li} \phi \psi_{Rj} + \mathrm{h.c.} \right) \\ & + \frac{c_W}{\Lambda^2} \frac{ig}{2} (\phi^{\dagger} \overleftrightarrow{D}_{\mu}^a \phi) D_{\nu} W^{a \, \mu\nu} + \frac{c_B}{\Lambda^2} \frac{ig'}{2} (\phi^{\dagger} \overleftrightarrow{D}_{\mu} \phi) \partial_{\nu} B^{\mu\nu} + \frac{c_{\phi W}}{\Lambda^2} ig D_{\mu} \phi^{\dagger} \sigma_a D_{\nu} \phi W^{a \, \mu\nu} + \frac{c_{\phi B}}{\Lambda^2} ig' D_{\mu} \phi^{\dagger} \sigma_a D_{\nu} \phi B^{\mu\nu} \\ & + \frac{c_{\gamma}}{\Lambda^2} g'^2 \phi^{\dagger} \phi B^{\mu\nu} B_{\mu\nu} + \frac{c_g}{\Lambda^2} g_s^2 \phi^{\dagger} \phi G^{A \, \mu\nu} G^A_{\mu\nu} - \frac{c_{2W}}{\Lambda^2} \frac{g^2}{2} (D^{\mu} W^a_{\mu\nu}) (D_{\rho} W^{a \, \rho\nu}) - \frac{c_{2B}}{\Lambda^2} \frac{g'^2}{2} (\partial^{\mu} B_{\mu\nu}) (\partial_{\rho} B^{\rho\nu}) \\ & - \frac{c_{2G}}{\Lambda^2} \frac{g_s^2}{2} (D^{\mu} G^A_{\mu\nu}) (D_{\rho} G^{A \, \rho\nu}) + \frac{c_{3W}}{\Lambda^2} g^3 \varepsilon_{abc} W^a_{\mu} \,^{\nu} W^b_{\nu} \,^{\rho} W^c_{\rho} \,^{\mu} + \frac{c_{3G}}{\Lambda^2} g_s^3 f_{ABC} G^A_{\mu} \,^{\nu} G^B_{\nu} \,^{\rho} G^C_{\rho} \,^{\mu}, \end{split}$$

- Not a general EFT/basis, but contains the most relevant effective interactions expected in composite Higgs scenarios
- Expected dependence of the different Wilson coefficients, up to O(1) factors:

$$\frac{c_{\phi,6,y_f}}{\Lambda^2} = \frac{g_{\star}^2}{m_{\star}^2}, \qquad \qquad \frac{c_{W,B}}{\Lambda^2} = \frac{1}{m_{\star}^2}, \qquad \qquad \frac{c_{2W,2B,2G}}{\Lambda^2} = \frac{1}{g_{\star}^2} \frac{1}{m_{\star}^2}, \qquad \qquad \frac{c_{2W,2G,2G}}{\Lambda^2} = \frac{1}{g_{\star}^2} \frac{1}{m_{\star}^2}, \qquad \qquad \frac{c_{2W,2G,2G}}{\Lambda^2} = \frac{1}{g_{\star}^2} \frac{1}{g_{\star}^2}, \qquad \qquad \frac{c_{2W,2G,2G}}{\Lambda^2} = \frac{1}{g_{\star}^2} \frac{1}{g_{\star}^2} \frac{1}{g_{\star}^2}, \qquad \qquad \frac{c_{2W,2G,2G}}{\Lambda^2} = \frac{1}{g_{\star}^2} \frac{1}{$$

Simplified benchmark: 1 coupling (g*) - 1 scale (m*)

Indirect constraints in CH models

Indirect constraints in CH models

Higgs couplings provide the dominant constraint for strongly coupled CH models

Indirect constraints in CH models

Different ways of testing the compositeness scale (via O_{W,B}): Low-Energy precision (FCCee) vs High-Energy (CLIC)

Summary

- **Lepton colliders:** direct searches reach is limited compared to future hadron colliders, BUT they provide the best environment for precision measurements:
 - Higgs: sub-percent accuracy for several Higgs couplings + measurements not possible at hadron colliders. Self-coupling: 10-30% accuracy (direct/ indirect).
 - **EW:** advantage for machines running at the Z-pole (EWPO)
 - **Top** (not in this talk): better with runs at 2 energies above tt threshold
 - High Energy lepton colliders ⇒ Precision constraints on growing with energy effects.
- All these measurements can be used as indirect tests of new physics
 <u>Complementary</u> information to that from direct searches at hadron colliders

INFN - University of Padova

Backup slides

Future Colliders

Future Colliders Summary

Collider	Туре	\sqrt{s}	$\mathscr{P}\left[\% ight]$	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time	Refs.	Abbreviation
			$[e^{-}/e^{+}]$		$[10^{34}] \mathrm{cm}^{-2}\mathrm{s}^{-1}$	$[ab^{-1}]$	[years]		
HL-LHC	pp	14 TeV	-	2	5	6.0	12	[10]	HL-LHC
HE-LHC	pp	27 TeV	-	2	16	15.0	20	[10]	HE-LHC
FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]	
		$2M_W$	0/0	2	25	10	1-2		
		240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅
		-					(+1)	(1y SD	before $2m_{top}$ run)
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3,11]	ILC ₂₅₀
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC350
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC ₅₀₀
							(+1)	(1y SD	after 250 GeV run)
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC
		$2M_W$	0/0	2	10	2.6	1		
		240 GeV	0/0	2	3	5.6	7		
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀
							(+4)	(2y SDs b	etween energy stages)
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[9]	LHeC
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh

All results presented in combination with HL-LHC

Each collider stage used in combination with the previous ones

FCCeh/hh running together. Used in combination with FCCee

Future Collider Timeline

	T ₀	+5			+10		+15				+20		••••	+26	
ILC	0.5/ab 250 GeV		1.5/a 250 G	ab ieV		1.0/ 500 (′ab GeV	0.2/ab 2m _{top}							
CEPC	5.6/ab 16/ab 240 GeV Mz														
CLIC	1 38				2.5/a 1.5 Te	b ≥V			ntil +2 V	28					
FCC	150/ab ee, M _z	ab D GeV		e	1.7/ab ee, 2m _{top}										
LHeC	0.06/ab			0.2/a	b		0.72/ab								
HE- LHC	10/ab per experiment in 20y														
FCC eh/hh	20/ab per experiment in 25y														

Starting time at T₀

	'30	'32		'35				'40				4	45					' 50					'55		
CEPC		240 GeV Z W																							
ILC	250 GeV										500 GeV & 350 GeV														
FCC-ee	Z W								/	240 GeV 350-365 GeV															
CLIC	380 GeV											1.5 TeV 3 TeV													
LHeC	1.3 TeV																								
FCC-eh/hh											20/ab per exp. in 25 years														
HE-LHC											10/ab per exp. in 20 years														
HL-LHC		3	/ab																						

Earliest start time in ESU documents

к fit results: Higgs couplings

к fit results: Higgs couplings

к fit: No extra Higgs decays

Global EFT fit results: Higgs couplings

LHCP2019

BSM-motivated Effective Lagrangians

68% prob. bounds on SILH Lagrangian interactions:

