MUON Spectrometry at forward rapidities with ALICE

Massimiliano Marchisone on behalf of the ALICE Collaboration

Institut de Physique Nucléaire de Lyon

7th Large Hadron Collider Physics Conference Puebla, 20/05/2019

つくい

ALICE at CERN-LHC

- ALICE is a multipurpose experiment at the CERNLHC, mainly designed to study the hot and dense matter produced in heavy-ion collisions
- A Muon Spectrometer at forward rapidity allows the detection and reconstruction of muons from low mass vector mesons, quarkonia, open-heavy flavours, Z and W bosons

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 2/17](#page-0-0)

 QQ

The ALICE Muon Spectrometer

The Muon Spectrometer is composed of:

- **Muon Tracking** system
- **Muon Trigger** system
- dipole magnet $(\int B \mathsf{d} z = 3 \mathsf{T}\mathsf{\cdot m})$
- front absorber (4.13 m, \sim 10 λ_{int})
- iron wall (1.2 m, \sim 7 λ_{int})
- **o** beam shield

Muons can be detected in the range $-4.0 < \eta < -2.5$ down to $p \simeq 4$ GeV/c

 QQ

Muon Tracking

- 5 stations (10 planes) of Multi-Wired Proportional Chambers with a high granularity cathode-pad readout on both faces (1M channels)
- **o** First two stations are based on quadrant structure; the other three with slat design
- \bullet $\mathcal{O}(100)$ μ m detector resolution in the bending plane $(\Delta p/p < 1\%)$
- Made of carbon fiber $(0.03X_0)$
- Gas mixture (80% Ar and 20% $CO₂$) optimised to maximize the probability of gas ionization

 Ω

Tracking efficiency

- \bullet Tracking algorithm reconstructs particles across the five tracking stations
	- a at least 1 cluster in each of the first 3 stations
	- a at least 3 clusters in the last 2 stations
- Reconstructed tracks and the redundancy of the detector are exploited to determine the tracking efficiency
- Tracking efficiency close to 90%; cuts are applied to remove fake tracks

つくい

Muon Tracking alignment

- Muon Spectrometer p resolution depends on the detector alignment
- Alignment method uses reconstructed tracks (w/ and w/o \vec{B}) performing least-square minimization of the cluster-to-track residuals.
- Overall resolution (cluster res. plus residual misalignment) reaches 200 μ m in the bending direction

Muon Spectrometer acceptance

ALICE

- \bullet A \times ε within −4.0 $<$ η $<$ −2.5 is estimated with MC simulations
- **•** Particles are generated with realistic kinematic distributions
- Detector conditions are taken into account on a run-by-run basis
- Possible effects of high detector occupancy in central heavy-ion collisions are taken into account as well.

 \bullet \bullet \bullet J/ ψ ψ ψ A \times ε ε ε ε ε measured with Muon Spectrometer [is](#page-5-0) [siz](#page-7-0)a[bl](#page-6-0)e [do](#page-0-0)[w](#page-16-0)[n t](#page-0-0)o $p_T = 0$ $p_T = 0$ $p_T = 0$ $p_T = 0$ $p_T = 0$

The Muon Trigger

- 72 single-gap low-resistivity bakelite Resistive Plate Chambers (RPC) arranged in 4 planes
- Read out by means of ∼21k copper strips of different widths: 1, 2 and 4 cm
- Apparatus delivers two triggers based on muon p_T

resolution: few mm, few ns electrode material: bakelite ($\rho \sim 10^9$ Ω·cm) gas mixture: 89.7% $C_2H_2F_4 - 10\% C_4H_{10} - 0.3\% SF_6$ relative humidity: 37% working point: $10.1 - 10.4$ kV

つくい

Muon Trigger efficiency (2015-2018)

- Average efficiency of the four RPC planes stable over time and above 97%
- \bullet Small temporary drops (1-2%) essentially due [to](#page-7-0) [te](#page-9-0)[st](#page-7-0) [a](#page-8-0)[nd](#page-9-0) [n](#page-0-0)[ois](#page-16-0)[y e](#page-0-0)[lec](#page-16-0)[tr](#page-0-0)[onic](#page-16-0)s つくへ

 \Box

Average integrated charge at the end of 2018 data taking ranges between 7 and 12 mC/cm^2 (20 m C/cm^2 for the most exposed RPC)

 \blacksquare

 \bullet Muon Trigger RPCs were ageing-tested up to 50 mC/cm²

Data taking with Muon Spectrometer

-
- Muon Spectrometer participated fruitfully in almost 10 years of data taking (2009-2018)
- **If** collected data during all types of collisions provided by LHC

Almost 20% of total ALICE publications made use of Muon Spectrometer data

Examples of reconstructed (di-)muons

Int J. Mod. Phys. A 29 (2014) 1430044 PLB 780 (2018) 372-383

つくへ

Physics highlights

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 13/17](#page-0-0)

- LHC will deliver an instantaneous luminosity ∼6 times higher than past years \rightarrow 50 kHz Pb-Pb interaction rate (so far $\lt 10$ kHz)
- The present electronics will not be compatible with such rate
- **•** Both systems are now being upgraded to be ready for these new data taking conditions

ہ 70

- Muon Spectrometer participated in high luminosity tests to monitor the behavior of the system in the expected condition beyond 2021
- **•** Example of measured current in Muon Trigger up to an equivalent rate of 50 kHz Pb-Pb

Upgrade program of the Muon Spectrometer

- Muon Tracking **New Front-End ASIC 130 nm CMOS (SAMPA** chip) in common with TPC, 4 times faster than current ASIC, with zero suppression
	- New concentrator board to read out several PCBs and to transmit data to ALICE DAQ through GBT optical links
	- Flex-rigid PCBs to link FEE and RO cards

Muon Trigger (\Rightarrow Muon Identifier)

- New Front-End ASIC (FEERIC) with amplification
- **O** New readout electronics with GBT optical links
- **•** Possibility to change discrimination threshold via wireless system
- $\bullet \sim$ 30 RPCs will be replaced

Muon Forward Tracker

• New high resolution Si tracker upstream of the absorber at forward rapidity will add capabilities for secondary vertex measurement

- **•** 10 half-disks, 2 detection planes each
- 280 ladders (Al FPC) of 2-5 sensors each: 920 Si chips (0.4 m^2)

• ALPIDE: CMOS Monolithic Active Pixel Sensors (same as new ITS)
- sensor size 15 \times 30 mm² - 512 \times 1024 pixels per sensor -512×1024 pixels per sensor - pixel pitch $29 \times 27 \ \mu m^2$ - total thickness 50 μ m low power density ∼40 mW/cm² – integration time <10 μ s
- detection efficiency > 99% – fake-hit rate <10⁻⁶/pix - fake-hit rate [<1](#page-14-0)0<sup>-6<[/](#page-14-0)sup>/[pi](#page-15-0)[xe](#page-16-0)[l/e](#page-0-0)[ven](#page-16-0)[t](#page-0-0) [≥] QQ Massimiliano Marchisone, 20/05/2019 [LHCP 2019 16/17](#page-0-0)

Summary and outlook

- ALICE Muon Spectrometer showed very good and stable performance since the first collision in LHC
- Very high quality data taking substantially contributing to the ALICE scientific output

Upgraded Muon Spectrometer $+$ MFT $+$ higher luminosity = extended physics program and more precise measurements

Backup

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 18/17](#page-0-0)

Ε

(□) (d)

 $\mathbf{F}=\mathbf{A}$. 哇 一 三 \rightarrow

D.

Muon Spectrometer

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 19/17](#page-0-0)

←□

Ε

Front absorber and beam shield

 \leftarrow

目

 \rightarrow

Muon filter and dipole magnet

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 21/17](#page-0-0)

MTK efficiency calculation

Method based on the tracking algorithm properties :

Only tracks for which the examined chamber is not required for the reconstruction are selected

For stations 1, 2 and 3 : at least 1 cluster per station

$$
\epsilon_{ch\ i}=\frac{N_{i-j}}{N_{i-j}+N_{0-j}}
$$

$$
\epsilon_{\text{st 1(2)(3)}} = 1 - \left(1 - \epsilon_{\text{ch 1(3)(5)}}\right)\left(1 - \epsilon_{\text{ch 2(4)(6)}}\right)
$$

For stations 4 and 5: at least 3 clusters in the 4 last chambers

$$
\epsilon_{st\;45} = \prod_{i=7}^{1=10} \epsilon_{ch\;i} + \sum_{i=7}^{i=10} \left((1-\epsilon_{ch\;i}) \prod_{j=7; j\neq i}^{j=10} \epsilon_{ch\;j} \right)
$$

 $\epsilon_{tracking} = \epsilon_{st1} \epsilon_{st2} \epsilon_{st3} \epsilon_{st45}$

4 ロ ▶ (母

 \sim ∍

×.

∍

Tracking efficiency (comparison with MC)

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 23/17](#page-0-0)

ミー 299

キロメ メタメ メモメ メモメ

RPC cross section

ミー

イロメ イ母メ イヨメ イヨメ

Trigger principle

• The spatial information is used to estimate the p_T via the deviation with respect to a straight track from the I.P.

- The cuts are optimized by means of simulations and correspond to an efficiency of 50% at p_T equal to the cut value.
- Single and dimuon trigger signals above two cuts are delivered:

MTR efficiency calculation

The efficiency for chamber $a = 12$ (for example) is given by:

 $\frac{N_{4/4}}{(N_{3/3}^3+N_{4/4})}=\frac{N_{4/4}/N_{\rm tot}}{(N_{3/3}^3+N_{4/4})/N_{\rm tot}}=\frac{\varepsilon_{4/4}}{\varepsilon_{3/3}^2+\varepsilon_{4/4}}=\frac{\varepsilon_{11}\varepsilon_a\varepsilon_{13}\varepsilon_{14}}{\varepsilon_{11}\varepsilon_{13}\varepsilon_{14}}=\varepsilon_a$ $#$ of triggered tracks if chamber a were switched off. Massimiliano Marchisone, 20/05/2019 [LHCP 2019 27/17](#page-0-0)

 200

ALICE

MT11 INSIDE Integrated charge vs time

Ε

E

◆ロト→伊ト

 \prec э ×, **D**

 \sim

MT12 INSIDE Integrated charge vs time

Ε

E

×, **D**

 \sim

K ロ ト K 何 ト K 手

E

◆ロト→伊ト

 \prec э ×, $\,$ ≣

 \sim

E

◆ロト→伊ト

 \prec э ×, **D** ≣

 \sim

Muon Tracking new readout electronics

Subatech Nantes, Ithemba Jah

- Replacement of the 234 Local cards and of the 16 Regional cards presently in operation
- \Box Readout electronics for continuous mode
	- . Regional card interfaced with CRU via 2 GBTs
- \Box Pre-series v0 readout cards
	- . Full chain (with 3 Local and 1 Regional) validated in October 2018

□ Production status, perspectives

- . Improved (v1) layouts of Local/Regional
- Pre-series v1 of 20 Local and 3 Regional received early March 2019
- Full crate (with 16 Local and 1 Regional =>1/16 of total) validation ongoing

∻ Preliminary tests very satisfactory

- ❖ PRR follow-up meeting to be organized, ~end of April, before launching full production
- · Summer 2019 : production completed ❖ ~8 months contingency vs. installation

MID CRU specific user logic

- Tests in simulation of uplink logic done
- . CRU FPGA code compilation and uploading ongoing
- Next step: tests connected to MID readout electronics

Present front-end electronics (MTR)

Since the beginning of LHC operations, MTR has been equipped with **ADULT** (A DUaL Threshold) front-end electronics:

- no amplication of the signal, only discrimination;
- **•** symmetric threshold set at 7 mV (for most of the data taking);
- possibility to work in avalanche and streamer mode with the same FEE;
- in these conditions the average charge [pe](#page-31-0)r [h](#page-16-0)[it](#page-15-0) [is](#page-16-0) ≥ 100 ≥ 100 ≥ 100 p[C.](#page-16-0)

● Safe operation limits in the present conditions (from R&D):

• Values foreseen for LHC-Run3 (from 2020 onwards) in Pb-Pb collision at an interaction rate of 50 kHz (times a safety factor of 2):

- To guarantee safe operation in the new scenario, the charge per hit must be reduced. Target reduction is a factor $3 \div 5$.
- Possible solution: operate the RPC in avalanche mode lowering the gain \Rightarrow FEE with amplification.
- An upgrade of the read-out system is also foreseen in order to deal with the increased event rate (not discussed here).

¹Maximum charge reached in aging tests. Massimiliano Marchisone, 20/05/2019 [LHCP 2019 34/17](#page-0-0)

New front-end electronics: specifications

• FEERIC (Front-End Electronics Rapid Integrated Circuit).

- R&D started in 2012: 3 different versions developed at LPC of Clermont-Ferrand (France).
- Main functions: amplication, discrimination, LVDS output.
- **•** Possibility to set thresholds remotely.

∢ ロ ▶ - ◀ @ ▶

New front-end electronics: performance

Direct gain of ∼ 0.86 mV/fC in the range ± 1 fC.

- Response time $20 \div 22$ ns, with a jitter of $<$ 200 ps for $q = 200$ fC.
- \bullet Cross-talk $<$ 2%.

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 37/17](#page-0-0)

4日)

× 同 \sim Ε

∍

Пb.

Choice of the working point

HV and threshold scan with early pp collisions.

- Full efficiency reached by all thresholds and both polarities.
- Cluster size slightly larger than the one measured with ADULT at higher HV (~ 1.6 vs ~ 1.4).
- Working point at 9375 V and 130 fC (-750 V w.r.t. ADULT).
- \bullet No noise observed for threshold > 60 fC for both polarities.
- Results are in full agreement with measurements made with cosmic rays in Turin.

 $1.7.1$ $1.7.7$

Wireless threshold distribution

\Box Why go to wireless threshold distribution?

- . Threshold setting per FEERIC card (vs. per RPC side in the present setup)
- . Possibility of minimizing RPC operating HV, by tuning thresholds locally \Rightarrow optimize FEERIC goal to reduce RPC ageing

\Box Ziabee technology used

- High level protocol
- · Suitable for required data bandwidth and speed
- · Bandwidth 2.4 Ghz/Radio Communication
- . Based on Microcontroller Atmel SAMD21 core Cortex M0+
- SoftWare based on Arduino libraries (I2C, SD cards and Xbee)
- . API mode used, checksum for quaranteeing data transmission
	- . One full line has been installed during YETS 2017 on the RPC already equipped with FEERIC cards in the cavern, 2018 will be devoted to long term stability tests.

Xbee peripheral card (24 peripheral + 2 master cards needed in total)

4 ロ ▶ (母

MID readout electronics

Subatech Nantes, Ithemba lab

- Replacement of the 234 Local cards and of the 16 Regional cards presently in operation
- \Box Readout electronics for continuous mode
	- . Regional card interfaced with CRU via 2 GBTs
- \Box Pre-series v0 readout cards
	- . Full chain (with 3 Local and 1 Regional) validated in October 2018

□ Production status, perspectives

- . Improved (v1) layouts of Local/Regional
- Pre-series v1 of 20 Local and 3 Regional received early March 2019
- Full crate (with 16 Local and 1 Regional =>1/16 of total) validation ongoing

∻ Preliminary tests very satisfactory

- ❖ PRR follow-up meeting to be organized, ~end of April, before launching full production
- · Summer 2019 : production completed ❖ ~8 months contingency vs. installation

MID CRU specific user logic

- Tests in simulation of uplink logic done
- . CRU FPGA code compilation and uploading ongoing
- Next step: tests connected to MID readout electronics

Muon Forward Tracker: concept

Muon spectrometer only:

• degradation of muon p_T due to the absorber;

 \leftarrow \Box

• no constraint in the primary vertex region.

- **•** charm/beauty separation possible;
- **•** improved mass resolution.

Muon Forward Tracker: concept

Muon spectrometer only:

 \bullet degradation of muon p_T due to the absorber;

 $-10⁻¹⁰$

• no constraint in the primary vertex region.

MFT+Muon spectrometer:

- **•** charm/beauty separation possible;
- **•** improved mass resolution.

- Prompt and displaced (di)muons can be distinguished by measuring the distance between primary vertex and the muon track: open charm ($c\tau \cong 150 \ \mu m$) and open beauty ($c\tau \cong 500 \ \mu m$) can be disentangled.
- The reduced uncertainty on the opening angle can significantly improve the mass resolution for low mass mesons and ψ resonances, especially at low p_T .

New tracking capabilities at forward rapidity

- \bullet Muon tracks offset resolution ~50-100 μ m at $p_T < 2$ GeV/c, better at higher p_T : c and b can be distinguished.
- Extrapolated muon tracks are matched:
	- either with lowest- χ^2 combination of MFT clusters;
	- or with the lowest- χ^2 MFT standalone track.

MFT design goals

Vertexing for the Muon spectrometer at forward rapidity:

- 5 detection disks with detection on both side, $O(5 \mu m)$ spatial resolution;
- \bullet 0.7% of X_0 per disk;
- $-3.6 < n < -2.45$;
- disk 0 at $z = -460$ mm, $r_{\rm in} = 25$ mm (limited by the beam-pipe radius).
- Good matching efficiency between MFT and Muon spectrometer:
	- disk 4 at $z = -768$ mm (limited by the frontal absorber).
- Fast electronics read-out:
	- Pb–Pb interaction rate up to 50 kHz, pp interactions up to 200 kHz;

(□) (@) (∃

• Integration time and dead-time $< 20 \mu s$.

Material budget

Ladder contribution (two sides): 0.3%

- Sensor: 0.09%
- **•** Flex substrate: 0.08%
- Al circuitry: 0.1%

Total Disk: 0.7%

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 45/17](#page-0-0)

 \leftarrow

Chip layout

キロメ メタメ メモメ メモメ

つくへ

目

Chip layout

 299

目

K ロ ⊁ K 何 ⊁ K 手

 $\mathbf{y} \rightarrow \mathbf{z}$. If \mathbf{y}

ALice PIel DEtector characteristics

ALPIDE is the chip used in the MFT and in the new ITS.

- CMOS Monolithic Active Pixel Sensor (Si)
- Sensor thickness 50 μ m
- Sensor size 15 \times 30 mm²; pixel pitch 29 \times 27 μ m²
- Spatial resolution of 5 μ m
- \bullet Time resolution 2 μ s
- \bullet Low power consumption 40 mW/cm²
- In-pixel amplication/discrimination/multi-event buffering
- **o** In-matrix zero suppression
- **•** Triggered or continuous acquisition
- High speed serial data output up to 1.2 Gb/s

ALPIDE test beam results

- Very high detection efficiency $(> 99%)$
- Very low fake hit rate

- Spatial resolution 5-6 μ m, as specifications
- **Cluster size 2-3 pixels**

MFT layout

4日)

э

MFT layout

Massimiliano Marchisone, 20/05/2019 [LHCP 2019 49/17](#page-0-0)

- **•** Ladders are the base element of the MFT detector.
- Transport data to the detector periphery and slow control to the sensors.
- **•** Provide proper power supply and reverse back bias to the chips.
- Ensure adequate stiffness for handling and protect the sensors.
- Sensors are interconnected to a Al Flexible Printed Circuit (FPC).

4日)

Ladder assembly

- Automatic chip picking from the tray.
- **•** Precise and automatic alignment on the chip.
- **•** If needed, electrical test of the chip.
- Visual inspection of chip quality and alignment.

MFT disks

- Ladders are automatically glued on both sides of the heat exchanger.
- They are also connected to PCBs for data transfer.

 \leftarrow

 QQ

Low-mass region: mesons below $m_{J/\psi}\cong 3.1\,$ GeV/c².

• Mass resolution improved with the MFT. ρ peak now visible.

Improvement in the J/ψ region

- $\bullet \psi(2S)$ is another $c\bar{c}$ state, similar to J/ ψ .
- $\bullet \psi(2S)$ S/B improved by a factor 6-7, visible now even in central Pb-Pb collisions.

 QQ