Reconstruction at 30 MHz for the LHCb upgrade

Murilo Rangel on behalf of the LHCb Collaboration

LHCb is a single arm spectrometer fully instrumented in the forward region (2.0<η<5.0)

Designed for heavy flavour physics and also exploited for general purpose physics

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

Tracking (magnet)
0.4%-0.6% momentum resolution (0.2-100 GeV)

LHCb Upgrade

CERN-LHCC-2012-007

LHCb Integrated Luminosity in Pb-Pb in 2018

LHCb Integrated Luminosity at Pb-Pb in 2015

LHCb Integrated Luminosity at p-Pb 4 TeV in 2013

LHCb Upgrade

arXiv:1808.08865 [hep-ex]

Run 2 trigger

LHCb Run II Trigger Diagram (2015 - 2019)

Trigger structure:

Hardware: energies deposited in calorimeters and muon stations hits are used to bring 40 MHz to 1 MHz

*Software: events built at 1 MHz (~27000 physical cores)
HLT1: fast tracking and inclusive selections
1 MHz to 100 kHz
HLT2: complete event reconstruction and selections

JINST 14 (2019) no.04, P04013

Run 2 trigger

♯ HLT Farm with 10 PB disk space
 ♯ At an average event size of 55 kB with 100 kHz: up to 2 weeks before HLT2 has to be executed
 ♯ 2x trigger CPU capacity since Farm is used twice for HLT (excess used for simulation)

Run 2 trigger

- # Real-time alignment and calibration
- # Dedicated HLT1 trigger lines supply samples for the alignment
- # Alignment & calibration tasks run in parallel while events are are being processed by HLT1

JINST 14 (2019) no.04, P04013

Run 2 trigger: Turbo

Bandwidth $[GB s^{-1}] \propto Trigger output rate [kHz] \times Average event size [kB]$

Turbo data processing model

Analyses that can be done using trigger objects can profit of <u>reduced</u> event size and <u>higher</u> trigger rate.

Event size can be reduced from <u>70</u> kB to <u>7</u> kB depending on the persistence level

Calibration samples increased, reducing systematic uncertainties on efficiency measurements

50% of HLT2 trigger lines are Turbo counting 10% of the bandwidth

Run 2 Trigger: Turbo Analyses

Study of J/ψ Production in Jets

R. Aaij et al. (LHCb Collaboration) Phys. Rev. Lett. **118**, 192001 – Published 8 May 2017

Physics See Viewpoint: Probing Quarkonium Production in Jets

Observation of the Doubly Charmed Baryon Ξ_{cc}^{+}

R. Aaij *et al.* (LHCb Collaboration) Phys. Rev. Lett. **119**, 112001 – Published 11 September 2017

Physics See Viewpoint: A Doubly Charming Particle

Run 2 trigger: Efficiencies

$$\epsilon = \frac{N(\text{TOS and TIS})}{N(\text{TIS})}$$

TOS: events triggered on the signal **TIS**: events triggered independently of the presence of the signal

If entire L0 bandwidth is granted If there is bandwidth division

JINST 14 (2019) no.04, P04013

Run 2 trigger: Plots

LHCb-CONF-2016-005

Rare events: high efficiency Copious production: high purity

LHCb Upgrade I

* Increase instantaneous luminosity:

 $4 \times 10^{32} \rightarrow 2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

★ HLT1 output: from 100 kHz to 1 MHz

Disk buffer contingency: from weeks to days

HLT2 output: from 0.6 GB/s to 10 GB/s

HLT2 output: from 0.6 GB/s to 10 GB/s

HLT2 output: from 0.6 GB/s to 10 GB/s

**The continue of the continue of

Run 3 Trigger

LHCB-PUB-2014-027

Rates as a function of pT cut for part. reco. candidates

2018

stream	event size	event rate	rate	throughput	bandwidth
	(kB)	(kHz)	fraction	(GB/s)	fraction
FULL	70	7.0	65%	0.49	75%
Turbo	35	3.1	29%	0.11	17%
TurCal	85	0.6	6%	0.05	8%
total	61	10.8	100%	0.65	100%

Upgrade

stream	rate fraction	throughput (GB/s)	bandwidth fraction
FULL	26%	5.9	59%
Turbo	68%	2.5	25%
TurCal	6%	1.6	16%
total	100%	10.0	100%

Run 3 Trigger: HLT1

LHCB-PUB-2017-006

Loose (L) track selection: 1 MHz # Tight (T) track selection: 0.5 MHz

♯ Inclusive selection using combination of Loose (L) and Tight (T) with different p_T thresholds

Optimisation for both selections is expected using more realistic ghost rate

Run 3 Trigger: HLT2

LHCB-PUB-2017-006

Bandwidth Limit [MB/s]

is used.

stream usage

Summary

- # Success of Run 2 trigger paved the way to design Run 3 Trigger
- # No hardware trigger will allow great improvement in the trigger efficiencies Genetic-algorithm to cope with many (> 500) trigger lines
- # Larger use of reduced event size changes the trigger performance parameters rate → bandwidth signal efficiency → analysis sensitivity
- # Great potential for LHCb Run 3 physics program → Great challenge to achieve it

THANK YOU!!!!!

18

Run 2 trigger: Efficiencies

JINST 14 (2019) no.04, P04013

LHCb Run II trigger

Turbo

Run 3 Trigger: HLT1

LHCB-PUB-2017-006


```
# Loose (L) track selection: 1 MHz
# Tight (T) track selection: 0.5 MHz

# Inclusive selection using combination of Loose (L)
and Tight (T) with different p<sub>T</sub> thresholds

# Optimisation for both selections is expected using more realistic ghost rate
```

Run 2 trigger: Real-time alignment

((~7min),(~12min),(~3h),(~2h)) - time needed for both data accumulation and running the task