EFT Interpretation of Top Quark Measurements at the LHC

> 7th Large Hadron Collider Physics 2019 May 20-25, 2019, Puebla, Mexico

PROLAY KUMAR MAL NATIONAL INSTITUTE OF SCIENCE EDUCATION & RESEARCH BHUBANESWAR, INDIA

Top Quark Effective Field Theory

- CR Expansion of the SM Lagrangian with higher-order operators to model New Physics (NP) at an energy scale, Λ
 - $\operatorname{\mathfrak{GS}}$ SM Lagrangian (\mathcal{L}_{SM}) consists of Dimension-4 operators
 - Of Dimension-5 operators typically excluded as they do not conserve lepton number
 - CM The Effective Lagrangian (\mathcal{L}_{eff}) is a series of dimension-6 operators (\mathcal{O}_i) with dimensionless Wilson coefficients (c_i) to parametrize the NP interaction strength
 - CS Theoretically consistent, Model independent approach
- C LHCTop Working Group proposal for EFT interpretation:
 - In total, 59 dimension-6

arXiv:1802.07237 [hep-ph]

- operators conserving baryon number
- and lepton numbers
- Several of them are
- relevant for Top EFT interpretation

 $\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda^2} \sum c_i \mathcal{O}_i + \cdots$

LHCTopWG EFT Proposal

4-Quark Operators

$$\begin{split} &O_{qq}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ &O_{qq}^{3(ijkl)} = (\bar{q}_i \gamma^{\mu} \tau^I q_j) (\bar{q}_k \gamma_{\mu} \tau^I q_l), \\ &O_{qu}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ &O_{qu}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A u_l), \\ &O_{qd}^{1(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{qd}^{8(ijkl)} = (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} u_l), \\ &O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{1(ijkl)} = (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &O_{ud}^{8(ijkl)} = (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ &\delta_{ud}^{8(ijkl)} = (\bar{q}_i u_j) \varepsilon (\bar{q}_k d_l), \\ &^{\dagger} O_{quqd}^{1(ijkl)} = (\bar{q}_i T^A u_j) \varepsilon (\bar{q}_k T^A d_l), \end{split}$$

2-Quark Operators

 ${}^{\dagger}O_{u\varphi}^{(ij)} = \bar{q}_{i}u_{j}\tilde{\varphi} (\varphi^{\dagger}\varphi),$ $O_{\varphi q}^{1(ij)} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{i}\gamma^{\mu}q_{j}),$ $O_{\varphi q}^{3(ij)} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j}),$ $O_{\varphi u}^{(ij)} = (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}u_{j}),$ ${}^{\dagger}O_{\varphi u d}^{(ij)} = (\tilde{\varphi}^{\dagger}iD_{\mu}\varphi)(\bar{u}_{i}\gamma^{\mu}d_{j}),$ ${}^{\dagger}O_{uW}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}\tau^{I}u_{j})\tilde{\varphi}W_{\mu\nu}^{I},$ ${}^{\dagger}O_{uW}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}\tau^{I}d_{j})\varphi W_{\mu\nu}^{I},$ ${}^{\dagger}O_{uB}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}T^{A}u_{j})\tilde{\varphi}B_{\mu\nu},$ ${}^{\dagger}O_{uG}^{(ij)} = (\bar{q}_{i}\sigma^{\mu\nu}T^{A}u_{j})\tilde{\varphi}G_{\mu\nu}^{A},$

2-Quark-2-Lepton Operators

$$\begin{split} O_{lq}^{1(ijkl)} &= (\bar{l}_i \gamma^{\mu} l_j) (\bar{q}_k \gamma^{\mu} q_l), \\ O_{lq}^{3(ijkl)} &= (\bar{l}_i \gamma^{\mu} \tau^I l_j) (\bar{q}_k \gamma^{\mu} \tau^I q_l), \\ O_{lu}^{(ijkl)} &= (\bar{l}_i \gamma^{\mu} l_j) (\bar{u}_k \gamma^{\mu} u_l), \\ O_{eq}^{(ijkl)} &= (\bar{e}_i \gamma^{\mu} e_j) (\bar{q}_k \gamma^{\mu} q_l), \\ O_{eu}^{(ijkl)} &= (\bar{e}_i \gamma^{\mu} e_j) (\bar{u}_k \gamma^{\mu} u_l), \\ ^{\ddagger} O_{lequ}^{1(ijkl)} &= (\bar{l}_i e_j) \varepsilon (\bar{q}_k u_l), \\ ^{\ddagger} O_{lequ}^{3(ijkl)} &= (\bar{l}_i \sigma^{\mu\nu} e_j) \varepsilon (\bar{q}_k \sigma_{\mu\nu} u_l), \\ ^{\ddagger} O_{lequ}^{(ijkl)} &= (\bar{l}_i e_j) (\bar{d}_k q_l), \end{split}$$

arXiv:1802.07237 [hep-ph]

- Prescriptions for EFT interpretation from LHC Top quark Measurements
- Number of degrees of freedom
 - Sour heavy quarks: 11 + 2 CPV
 - Two light and two heavy quarks: 14
 - Two heavy quarks and bosons: 9 + 6 CPV
 - Two heavy quarks and two leptons: (8 + 3 CPV) x 3 lepton flavors

○२ Top EFT Operators implemented at tree-level in dim6top UFO model: https://feynrules.irmp.ucl.ac.be/wiki/dim6top

Top Analyses for EFT Interpretation

- Various dimension-6 operators can effect the top quark production processes at the LHC in different production modes
- CMS/ATLAS interpretation for the following processes at vs=13 TeV so far

Interpretation of ttZ measurements

- Same-sign and Opposite sign dilepton, trilepton and tetra-lepton inclusive cross-section analysis
- ◆ 5 operators can modify the ttZ rates:
 O⁽³⁾_{φQ}, O⁽¹⁾_{φQ}, O_{φt}, O_{tW}, O_{tB}
 ◆ O⁽³⁾_{ΦQ} and O⁽¹⁾_{ΦQ} are contribute to ttZ vertex as a linear combination
 - ♦ Measurement is sensitive to the difference: $\mathcal{O}^{(3)}_{\Phi Q}$ $\mathcal{O}^{(1)}_{\Phi Q}$

Interpretation of ttZ measurements

- ♦ EFT ttZ signal weight estimation at the generator level wrt the SM signal strength
- Reconstructed events reweighted to obtain the EFT signal shape

Interpretation of ttZ measurements

New Physics limits with tW/tt \rightarrow dilepton

electer

arXiv:1903.11144 [hep-ex] submitted to FPIC

- Final state signature with two \diamond isolated leptons and b-jets
- ♦ Signal categorization:

 \diamond tt: 2 leptons + >=2 bjets \diamond tW: 2 leptons + 0-1 bjet

- \diamond Wilson coefficients sensitive to BSM contributions to the tt and tW production: C_G , $C^{(3)}_{\Phi q}$, C_{tW} , C_{tG} , C_{uG} , and C_{cG}; C_{tG} can be probed with both tW and tt
- \diamond Simultaneous fits in different dilepton & b-tagged regions: C_G
- \diamond Neural Network based separation between tt, tW and FCNC signal

 \diamond tt vs tW: $C^{(3)}_{\Phi q}$, C_{tW} , C_{tG}

 \diamond SM (tt+tW) vs FCNC tW: C_{uG}, and C_{cG}

leeeoo

LHCP2019, Puebla, Mexico, May 20-25, 2019

0.2

0.3

0.4

0.5

0.6

0.7

0.9

0.8

0.8

0.9

NN output

New Physics limits with tW/tt \rightarrow dilepton

arXiv:1903.11144 [hep-ex] submitted to EPJC

Eff. coupling	Channel	Observed	Expected
	ee	$-0.14^{+0.51}_{-0.82}$ $[-1.14$, $0.83]$	$0.00^{+0.59}_{-0.90}$ [-1.20 , 0.88]
C _G	еµ	$-0.18\substack{+0.42\\-0.73}$ $[-1.01$, 0.70]	$0.00^{+0.51}_{-0.82}$ [-1.08 , 0.77]
	μμ	$-0.14\substack{+0.44\-0.75}$ $[-1.06$, $0.75]$	$0.00^{+0.57}_{-0.88}$ [-1.16 , 0.85]
	Combined	$-0.18\substack{+0.42\-0.73}$ $[-1.01$, 0.70]	$0.00^{+0.51}_{-0.82}$ [-1.07 , 0.76]
	ee	$1.12^{+2.89}_{-1.18}\left[-4.03$, $4.37 ight]$	$0.00^{+1.74}_{-2.53}$ [-6.40 , 3.27]
$C^{(3)}$	еµ	$-0.70^{+0.59}_{-2.16}$ $[-3.74$, $1.61]$	$0.00^{+1.12}_{-1.34}$ $[-2.57$, $2.15]$
$C_{\phi q}$	μμ	$1.13^{+2.86}_{-0.87} \left[-3.58$, $4.46 ight]$	$0.00^{+1.92}_{-2.20}$ $[-4.68$, 3.66]
	Combined	$-1.52^{-0.33}_{-2.71}$ [-3.82 , 0.63]	$0.00^{+0.88}_{-1.05}$ $[-2.04$, $1.63]$
	ee	$6.18^{+7.81}_{-3.02}\left[-4.16 ight.$, $8.95 ight]$	$0.00^{+6.81}_{-2.02}$ [-3.33 , 8.12]
Carr	eμ	$1.64^{+\overline{5.59}}_{-0.80}$ [-1.89 , 6.68]	$0.00^{+\overline{6}.\overline{19}}_{-1.40}$ [-2.39 , 7.18]
\subset_{tW}	μμ	$-1.40^{+7.79}_{-3.00}$ $[-4.23$, 9.01]	$0.00^{+6.97}_{-2.18}$ [-3.63 , 8.42]
	Combined	$2.38^{+4.57}_{+0.22} \left[-0.96$, $5.74 ight]$	$0.00^{+\overline{5.93}}_{-1.14}$ $[-1.91$, 6.70]
	ee	$-0.19^{+0.02}_{-0.40}$ $[-0.65$, $0.22]$	$0.00^{+0.21}_{-0.22} \left[-0.44$, $0.41 ight]$
Cue	eμ	$-0.03^{+0.11}_{-0.19}$ $[-0.34$, $0.27]$	$0.00^{+0.15}_{-0.17}$ [-0.34 , 0.29]
	μμ	$-0.15^{+0.02}_{-0.34}$ $[-0.53$, $0.19]$	$0.00^{+0.18}_{-0.19}$ [-0.40 , 0.35]
	Combined	$-0.13\substack{+0.02\\-0.27}$ $[-0.41$, $0.17]$	$0.00^{+0.14}_{-0.15}$ [-0.30 , 0.28]
	ee	$-0.017^{+0.22}_{-0.22}$ [-0.37 ,0.37]	$0.00^{+0.29}_{-0.29}$ $[-0.42$, $0.42]$
C	eμ	$-0.017^{+0.17}_{-0.17}$ [-0.29, 0.29]	$0.00^{+0.26}_{-0.26}$ [-0.38 , 0.38]
	μμ	$-0.017_{-0.17}^{+0.17}$ [-0.29, 0.29]	$0.00^{+0.27}_{-0.27}$ [-0.38 , 0.38]
	Combined	$-0.017^{+0.13}_{-0.13}$ [-0.22 ,0.22]	$0.00^{+0.21}_{-0.21}$ [-0.30, 0.30]
	ee	$-0.032^{+0.47}_{-0.47}$ [-0.78 ,0.78]	$0.00^{+0.63}_{-0.63}$ [-0.92 , 0.92]
	eμ	$-0.032^{+0.34}_{-0.34}$ [-0.60 ,0.60]	$\left \begin{array}{c} 0.00^{+0.56}_{-0.56} \left[-0.81 , 0.81 \right] \right $
	μμ	$-0.032^{+0.36}_{-0.36}$ [-0.63 ,0.63]	$\left \begin{array}{c} 0.00^{+0.58}_{-0.58} \left[-0.84 , 0.84 \right] ight $
	Combined	$-0.032^{+0.26}_{-0.26}$ [-0.46 ,0.46]	$0.00^{+0.46}_{-0.46}$ $[-0.65$, 0.65]

- No excess in data have been observed and limits on the 6 coupling constants are set
- ♦ First experimental
 bound on C_G from top
 quark results
- ♦ The limits on C_{uG} and C_{cG} are translated into the FCNC branching ratios at 95% CL:

 \Rightarrow BR(t \rightarrow ug)<0.12%

Search for 4 top quarks

- ♦ Inclusive cross-section in single lepton and opposite sign dilepton signatures
- \diamond In SM, NLO predicted

 $\sigma_{pp \rightarrow tttt}$ ≈ 9 fb at vs=13 TeV

- Event categorization based on number jets and tagged jets
- ♦ Only relevant EFT dimension-6 operators: \mathcal{O}_{tt}^1 , \mathcal{O}_{QQ}^1 , \mathcal{O}_{Qt}^1 and \mathcal{O}_{Qt}^8
- Probe for 4 heavy quark interactions including tttt operator
- Observed cross-section is consistent with the SM and is used to constrain the EFT coupling parameters

CMS-PAS-TOP-17-019

$$\begin{aligned} \mathcal{O}_{tt}^{1} = (\bar{t}_{R}\gamma^{\mu}t_{R})\left(\bar{t}_{R}\gamma_{\mu}t_{R}\right), \\ \mathcal{O}_{QQ}^{1} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})\left(\bar{Q}_{L}\gamma_{\mu}Q_{L}\right), \\ \mathcal{O}_{Qt}^{1} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})\left(\bar{t}_{R}\gamma_{\mu}t_{R}\right), \\ \mathcal{O}_{Qt}^{8} = \left(\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L}\right)\left(\bar{t}_{R}\gamma_{\mu}T^{A}t_{R}\right), \end{aligned}$$

_	Operator	Expected C_k/Λ^2 (TeV $^{-2}$)	Observed (TeV ⁻²)
	\mathcal{O}_{tt}^1	[-1.5, 1.4]	[-2.2, 2.1]
	\mathcal{O}_{QQ}^{1}	[-1.5, 1.4]	[-2.2, 2.0]
	\mathcal{O}^1_{Qt}	[-2.5, 2.4]	[-3.7, 3.5]
,	\mathcal{O}_{Qt}^{8}	[-5.7, 4.5]	[-8.0, 6.8]

Top Chromo-magnetic Dipole Moment

- Anomalous Chromo-Magnetic Dipole
 Moment (CMDM) of the top quark
 corresponds to the O_{tG} operator in EFT _№
- Top pair Spin Density matrix measurement using the dilepton events
- Simultaneous fit using 20 parton-level differential distributions sensitive to tt spin correlation and top polarization:

+0.07< C_{tG}/Λ² <0.16 at 95% CL

↔ Previous constraints on C_{tG}/Λ² using the dσ/dΔφ(I,I) JHEP 02, 149 (2019)

 \diamond -0.06< C_{tG}/Λ^2 <0.41 at 95% CL

Summary & Conclusions

- ♦ With the 2016 and 2017 datasets both ATLAS and CMS have completed some of the key analyses related to Top quarks
- No clear evidence for the New Physics contribution into the Top physics is observed yet
- Many top quark results (FCNC, differential cross-section, 4 top) have been interpreted using Effective Field Theory approach using relevant dimension-6 operators (recommended by the LHCTopWG)
 - For quite a few sensitive channels, Top quark related Wilson Coefficients are best constrained
- Any more Top EFT interpretation to follow using Run 2 measurements
 - Further exploration of different approaches considering consistent treatment of different top production processes

References

♦ LHCTopWG: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG</u>
 ♦ ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
 ♦ CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>