
QCD low x evolution 
& the onset of gluon saturation in 

exclusive photo-production of 
vector mesons
Martin Hentschinski 
Universidad de las Americas Puebla 

Ex-Hacienda Santa Catarina Martir S/N 
San Andrés Cholula 

72820 Puebla, Mexico 
martin.hentschinski@gmail.com

in collaboration with Krzysztof Kutak (IPN Cracow) and Alfredo Arroyo Garcia (UDLAP)

arXiv:1904.04394 

LHCP 2019, May 20-25, Puebla, Mexico

mailto:martin.hentschinski@gmail.com


Experimental fact + theory 
prediction (BFKL):

power like 
growth of the 
gluon 
distribution at 
low x

[Fadin, Lipatov, Kuraev, PLB429 (1998) 127], 
[Balitsky, Lipatov, Sov.J.Nucl.Phys. 28 (1978)]



Saturation of gluon densities at low x

• if continued forever, 
power like growth of 
violates unitarity bounds 

• in the limit x=Q2/s→0: 
copies production of 
gluons = high parton 
densities 

• high densities slow 
down/stop growth of low 
x gluon: saturation
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[Gribov, Levin & Ryskin Phys. Rept. 100 (1983)]

Color Glass Condensate effective theory: [McLerran, Venugopalan PRD 49 (1994) 3352]



Phenomenological evidence: geometric scaling
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i.e. to the fixed front that moves rigidly with the critical velocity vc. In the QCD context time corre-
sponds to the logarithm of Bjorken x: t = ln(x0/x) where x0 is a constant corresponding to t = 0, and
z = ln(p

2
T/Q
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Therefore the travelling wave corresponds to the scaling solution with the saturation momentum given
by Eq. (1). In the following we shall check whether GS is present in di↵erent pieces of high energy
data.

2 Deep inelastic scattering (DIS)

Geometrical scaling was first introduced in the context of DIS for F2(x)/Q2 [9]. In Fig. 1 we plot
F2(x)/Q2 as a function of Q

2 (left panel) and in terms of the scaling variable ⌧ = Q

2/Q2
s (x) for

� = 0.329 (right panel) for the combined HERA data [10]. Points of di↵erent colors correspond to
di↵erent Bjorken x’s. We see from Fig. 1 that DIS data scale very well with some exception in the
right part of Fig. 1.b. These points, however, correspond to large Bjorken x’s where GS is supposed
to break.
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Figure 1. Combined DIS data [10] for F2/Q2. Di↵erent points forming a wide band as a function of Q

2 in the
left panel correspond to di↵erent Bjorken x’s. They fall on a universal curve when plotted in terms of ⌧ (right
panel). (Figure from the first paper of Ref. [1]).

Since the reduced cross-section in ep scattering (which is essentially proportional to F2/Q2) is
given as a convolution of the virtual photon wave function and an unintegrated gluon distribution of
the proton '
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3 Inelastic pT spectra at the LHC

The cross-section for not too hard gluon production in pp collisions can be described in the
kT�factorization approach by the formula [11]:
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Saturation and geometrical scaling

Michal Praszalowicz

1,a

1

M. Smoluchowski Institute of Physics, Jagiellonian University, Lojasiewicza 11, 30-348 Krakow, Poland

Abstract. We discuss emergence of geometrical scaling as a consequence of the non-
linear evolution equations of QCD, which generate a new dynamical scale, known as the
saturation momentum: Qs. In the kinematical region where no other energy scales exist,
particle spectra exhibit geometrical scaling (GS), i.e. they depend on the ratio pT/Qs,
and the energy dependence enters solely through the energy dependence of the saturation
momentum. We confront the hypothesis of GS in di↵erent systems with experimental
data.

1 Introduction

In this report we present a concise analysis of GS, slightly extended with respect to the presentation
given at the XLVI International Symposium on Multiparticle Dynamics. One can find more details
in the original publications [1]– [4] and in the recent conference proceedings [5], that cover the same
topics.

In QCD we have basically two sets of evolution equations that describe the change of parton
densities with decreasing resolution scale 1/Q2 – DGLAP equations, or with growing energy (or
equivalently with decreasing Bjorken x) – BFKL equation. In both cases the number of partons, or
more precisely the number of gluons, is growing rapidly with the evolution variable. In the BFKL case
however (since the average transverse size of gluons is fixed), we enter a regime where the partonic
system is not dilute and the linear evolution breaks down. A modified BFKL equation that includes
the non-linear terms is known as the Balitsky-Kovchegov (BK) equation [6]. One of the consequences
of the nonlinearities is the emergence of the so called saturation scale of the form [7, 8]:

Q

2
s (x) = Q

2
0(x/x0)��. (1)

Munier and Peschanski [8] draw an analogy between the BK equation and the time evolution of
the wave front u(t, z) in one dimensional space variable z:

@

@t
u(t, z) = O(@/@z) (2)

where O(@/@z) is a non-linear di↵erential operator corresponding in QCD to the BK kernel. For a
wide class of operators O and initial conditions for u, wave front u converges asymptotically to the
traveling wave:

u(x, z)! u(z � vct), (3)
ae-mail: michal@if.uj.edu.pl

ar
X

iv
:1

61
1.

02
43

6v
1 

 [h
ep

-p
h]

  8
 N

ov
 2

01
6

[Praszalowicz, Stebel, JHEP 1303, 090 (2013); JHEP 1304, 169 (2013)]

also: 
• BK fits to low x data 
• di-hadron de-correlation 
• application to heavy ion collisions & high multiplicity events 

Can we see it in a more direct way? As a consequence of 
evolution?



A process to explore the low x gluon at the 
LHC: exclusive photo-production of J/𝛹s

J/Ψ,Υ

e, p, Pb

W 2

t

q

p

• hard scale: charm 
mass (small, but perturbative) 

• reach up to x≳.5･10-6 

• perturbative cross-
check: ϒ (b-mass) 

• measured at LHC 
(LHCb, ALICE, CMS) & 
HERA (H1, ZEUS)



Introduction

DGLAP vs. saturation (II)

log(1/x)

fit HERA + LHC data
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evolve to higher scales e.g. M
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at Q
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' M
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= fit x dependence

I
J/ ! ⌥ ' evolution 2.4 GeV2 ! 22.4 GeV2

I high density e↵ects die away in collinear limit
I DGLAP unstable at ultra-small x and small scales ...
I convinced: pdf studies highly valuable ! constrain pdf’s at

ultra-small x
I useful benchmark for saturation searches (?)

Martin Hentschinski (UDLAP) BFKL & the growth of the VM Xsec. 04/04/1017 5 / 30
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schematic vs. reality

DGLAP

low x

• fit x-dependence + evolve from J/𝛹 (2.4 GeV2) to ϒ (22.4 GeV2)  
• DGLAP shifts large x input (low scales) to low x (high scales)  

+  higher twist dies away fast in evolution 
→constrain pdfs, but don’t learn about saturation (easily overseen)

DGLAP: 
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our study:  
• instead of DGLAP vs low x  
• linear low x (BFKL) vs. non-

linear low x (BK) 
• failure of BFKL = sign for BK 

    → high & saturated gluon
details:
BK evolution for dipole  
amplitude N(x,r)∈ [0,1] [related to gluon distribution]

in the transition region towards high and saturated gluon densities.

To fully access this question, we first recapitulate which possible impact large gluon den-
sities could have on the observable. First of all, the presence of high density e↵ects cannot be
seen directly at the level of the observable. The scattering amplitude Eq. (5) depends only
on the dipole amplitude, which itself can be expressed as the correlator of two Wilson lines
which resum the gluonic field of the proton, see e.g. [46]. Even though the dipole amplitude
resums the interaction of the qq̄-dipole with an in principle infinite number of gluons, the
gluons couple to the qq̄-dipole like a single gluon; the “reggeize” in the language of [47] and
therefore appear like a single gluon. At the level of our phenomenological study, this property
reveals itself through Eq. (9), which relates the dipole cross-section to the unintegrated gluon
density. To make multiple re-scattering of partons on the target field visible, it would be
necessary to resolve the hadronic final state of the dissociated photon, see e.g. [48, 49]. This
not the case for photo-production of vector mesons. The only place where one could expect
a signal for the presence of saturation e↵ects is therefore the x-dependence of the underlying
gluon distributions. As an immediate consequence, any framework which is based on a direct
fit of the x-dependence at the J/ scale (such as collinear parton distribution functions)
does not exclude presence of saturation e↵ects; it merely demonstrates the ability to fit the
resulting x-dependence of the underlying gluon distribution. While this initial x-distribution
can be evolved through DGLAP evolution to events with higher hard scales, such events
are generally characterized by larger values of x (x⌥ > 2.28 · 10�5 vs. x

J/ > 2.99 · 10�6

in the current case). Taking further into account that DGLAP evolution is known to shift
large x input to lower x, it is therefore save to say that the mere ability of DGLAP fits to
accommodate low x J/ photo-production data, does not exclude the potential presence of
sizable non-linear e↵ects for the data points at highest W -values.

Instead of DGLAP evolution, a suitable benchmark to establish presence/absence of gluon
saturation is provided by linear NLO BFKL evolution, such as the HSS gluon. While the
HSS gluon provides a very good description of both ⌥ and J/ photo-production data,
the following observation can be made: Recalling the particularly solution of NLO BFKL
evolution used for the HSS-fit, one finds at the at level of the dipole cross-section two terms
d
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=
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kernel 
calculated in 

pQCD

linear BFKL evolution = subset of 
complete BK

non-linear term 
relevant for N~1 
 (=high density)



BFKL & exclusive Vector Mesons

Good description of cominbed HERA [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
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Figure 3: Study of the dependence of F2(x, Q
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) on x using the LO photon

impact factor (solid lines) and the kinematically improved one (dashed lines).
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data: [H1 & ZEUS collab. 0911.0884]

Martin Hentschinski (UDLAP) Forward physics & small x gluon 23/05/2017 19 / 43

linear low x evolution as benchmark →requires 
precision

use: HSS NLO BFKL fit [MH, Salas, Sabio Vera; 1209.1353; 1301.5283] 

• uses NLO BFKL kernel  
[Fadin, Lipatov; PLB 429 (1998) 127]  
+ resummation of 
collinear logarithms 

• initial kT distribution 
from fit to combined 
HERA data
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[H1 & ZEUS collab. 0911.0884] 

Pomeron intercept



• based on unified (leading order) 
DGLAP+BFKL framework [Kwiecínski, 
Martin, Stasto, PRD 56(1997) 3991]  

• combined with leading order BK 
evolution [Kutak, Kwiecinski;hep-ph/0303209][Kutak, 
Stasto; hep-ph/0408117] 

• initial conditions: fit to combined 
HERA data  

• both non-linear and linear version 
available (= non-linearity 
switched off)

gluon with non-linear terms: KS gluon
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Figure 3: The proton structure function F2(x,Q2) from the fit of our framework, in its linear
and nonlinear variant, to the combined data from HERA [26] as a function of x for the Q2 range
from 1.5 to 400 GeV2 (with the vertical offsets of 0.2).

The corresponding equation for the unintegrated gluon density reads [27, 45]
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where z = x/x′ (see Fig. 2 for explanation of the variables). For convenience, we omit the g
subscript in the unintegrated gluon density symbol and keep only the subscript denoting the

5

[Kutak, Sapeta; 1205.5035]

[H1 & ZEUS collab. 0911.0884] 



The photo-production Xsection
= diffraction process

J/Ψ,Υ

e, p, Pb

W 2

t

q

p

explore inclusive gluon → can 
only calculate imaginary part of 
scattering amplitude at t=0

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1
�(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a

quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M

2
V

/W

2

with M

V

the mass of the vector meson. With the momentum transfer t = (q � q

0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form

d�

dt

(�p ! V p)

����
t=0

=
1

16⇡

��A�p!V p(W 2
, t = 0)

��2
, (1)

where A(W 2
, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet

exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].
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✓
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◆
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⇠ e

�BD(x)|t|

=mA�p!V p(x, t = 0) =

Z 1

0
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qq̄
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2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|B

D

(W )] is used with an energy dependent t

slope parameter B
D

, as motivated by Regge theory,

B

D

(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2

. (2)

Following [21, 22], we use for the numerical values ↵

0 = 0.06 GeV�2, W0 = 90 GeV and

b

J/ 
0 = 4.9 GeV�2 in the case of the J/ , while b

⌥
0 = 4.63 GeV�2 for ⌥ production. The

1Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively
become a source of photons leading to Ultra Peripheral Collisions

3
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is a function which collects both factors resulting from the proton impact factor and the
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poles to all orders; for details about the individual kernels see [25, 26]. The scale M is a
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corr. is proportional to
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integrated light-front wave function overlap = 
transition photon → dipole → vector meson

elements:

Meson m

f

/GeV N
T

R2/GeV�2
M

V

/GeV

J/ m

c

= 1.4 0.596 2.45 3.097
⌥ m

b

= 4.2 0.481 0.57 9.460

Table 1: Parameters of the boosted Gaussian vector meson wave functions for J/ and ⌥ [14,16].

by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular
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As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]
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r2, while f = c, b denotes the flavor of the
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employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �

T

(r, z), has the following
general form [18,32],

�

1s
T,L

(r, z) = N
T,L

z(1� z) exp

 
�

m

2
f

R2
1s

8z(1� z)
� 2z(1� z)r2

R2
1s

+
m

2
f

R2
1s

2

!
. (7)

The free parameters N
T

and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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how to compare to experiment?

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1
�(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a

quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M

2
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with M

V

the mass of the vector meson. With the momentum transfer t = (q � q

0)2, the
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following form
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, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet

exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].
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2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
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1Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively
become a source of photons leading to Ultra Peripheral Collisions
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The free parameters N
T

and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
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The free parameters N
T

and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.
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2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|B

D

(W )] is used with an energy dependent t

slope parameter B
D

, as motivated by Regge theory,

B

D

(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2

. (2)

1Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively
become a source of photons leading to Ultra Peripheral Collisions
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Results I
• leading order wave 

function → don’t control 
normalization (scale of 𝛼s) 
 

• standard scale choices 
for dipole cross-sections 
(~external scales)→ very 
good description of 
energy dependence with 
both HSS and KS gluon 

• premature (?) conclusion: 
non-linear dynamics is 
absent

Following [21, 22], we use for the numerical values ↵

0 = 0.06 GeV�2, W0 = 90 GeV and

b

J/ 
0 = 4.9 GeV�2 in the case of the J/ , while b

⌥
0 = 4.63 GeV�2 for ⌥ production. The

total cross-section for vector meson production is therefore obtained as
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�p!V p(W 2) =
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d�

dt

(�p ! V p)

����
t=0

. (3)

The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular

<eA(W 2
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=mA(W 2
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= tan
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2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (4)
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dt
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t=0

(5)
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2
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(µ2)

As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]
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dz
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where N (x, r, b) is the dipole amplitude and T denotes transverse polarization of the quasi-
real photon. Here
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, (7)

with ✏

2 = m

2
f

for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and ê

f

= 2/3, �1/3. For the scalar parts of the wave functions �

T,L

(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �

T

(r, z), has the following
general form [18,32],

�
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(r, z) = N
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z(1� z) exp
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2
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R2
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8z(1� z)
� 2z(1� z)r2

R2
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+
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2
f

R2
1s

2

!
. (8)

The free parameters N
T

and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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ϒ as perturbative control:
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Why premature?
HSS gluon (NLO BFKL) 
comes with 2 terms: 

evolution used for the HSS-fit, one finds at the at level of the dipole cross-section two terms
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large terms proportional to the first coe�cient of the QCD beta function, �0 = 11N
c

/3�2n
f

/3
have been resumed through employing a Brodsky-Lepage-Mackenzie (BLM) optimal scale
setting scheme [50]. The NLL kernel with collinear improvements reads
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where �
i

, i = 0, 1 denotes the LO and NLO BFKL eigenvalue and �RG resums (anti-)collinear
poles to all orders; for details about the individual kernels see [25, 26]. The scale M is a
characteristic hard scale of the process. The second contribution �̂

corr. is proportional to
�0 and acts in �-space as a di↵erential operator on the impact factors of external particles.
These terms do not exponentiate and have been therefore treated in [26] as a perturbative
correction to the BFKL Green’s function. Even though �̂

corr. is suppressed by a factor of ↵2
s

,
enhancement by ln(1/x) will eventually compensate for the smallness of the strong coupling
constant and invalidate the perturbative expansion. The behavior of the HSS-dipole cross-
section is studied in Fig. 2. To identify the relevant region in dipole size r for J/ photo-
production we further define

W (r) = 2⇡r

Z 1

0

dz

4⇡
( ⇤

V

 )
T

(r, z), (15)

as the z-integrated wave function overlap. Working with a fixed hard scale M

2 = 3.27 GeV2

we find in Fig. 2, that the perturbative expansion is well under control for a typical HERA x

value of x = 3.55 ·10�4 (Fig. 2.a). Turning however to the lowest x values probed at the LHC
of x = 2.81·10�6 (Fig. 2.b) we observe that the correction term is generally large; for certain r

values, which are further enhanced through the r-dependence of W (r), they even super-seed
the dominant term, resulting into a negative dipole cross-section. While the dipole cross-
section is not an observable, this clearly indicates a breakdown of the perturbative expansion
for dipole sizes where the integrated wave function overlap W (r) has its maximum value. The
problem of unnaturally large higher order corrections can be fixed by choosing a hard scale
related to the transverse size of the dipole. Following the scale setting used in fits [51] of the
IP-sat model [52], we may therefore chose M

2 = 4
r

2 + µ

2
0 with µ

2
0 = 1.51 GeV2. With this

scale, we find that the perturbative expansion indeed stabilizes: both for the HERA (Fig. 2.c)
and LHC x-values (Fig. 2.d) the perturbative term is well under control. Turning with this
choice for the hard scale however to data, we find that this scale setting (green dashed line
in Fig. 1) describes very well the energy dependence of ⌥-photo-production as well as J/ 
photo-production in the HERA region W < 300 GeV, but fails to describe J/ production
at the LHC (W > 300 GeV). The resulting growth with energy is too strong and the data are
no longer described (Fig. 1, top). We therefore conclude that NLO BFKL evolution can only
describe data in the region W > 300 GeV if one accepts very large perturbative corrections,
which super-seed for certain dipole sizes the dominant term and which slow down the growth
of the cross-section. If the size of these perturbative corrections is reduced using an suitable
hard scale, the growth of the HSS-gluon is too strong and cannot be accomodated by data.

The KS-gluon, which is subject to LO-BK evolution with collinear resummation provides
a very good description of J/ data in the region W > 300 GeV. To answer the question
whether this description relies on the presence of non-linear terms in the evolution equation,
we compare in addition to a linearized KS gluon (dashed black line in Fig. 1). We find that

9

NLO BFKL kernel (BLM scale 
setting) + coll. resummation

running coupling corrections which do not 
exponentiate = a perturbative correction



Why premature?
HSS gluon (NLO BFKL) 
comes with 2 terms: 
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negative + enhanced by log(1/x)

→ will eventually dominate the 
leading term!
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running coupling corrections which do not 
exponentiate = a perturbative correction



fixed external scale for running coupling  
→ breakdown of perturbative expansion 
at low x for certain dipole sizes r
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running coupling scale

large terms proportional to the first coe�cient of the QCD beta function, �0 = 11N
c

/3�2n
f

/3
have been resumed through employing a Brodsky-Lepage-Mackenzie (BLM) optimal scale
setting scheme [50]. The NLL kernel with collinear improvements reads
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where �
i

, i = 0, 1 denotes the LO and NLO BFKL eigenvalue and �RG resums (anti-)collinear
poles to all orders; for details about the individual kernels see [25, 26]. The scale M is a
characteristic hard scale of the process. The second contribution �̂

corr. is proportional to
�0 and acts in �-space as a di↵erential operator on the impact factors of external particles.
These terms do not exponentiate and have been therefore treated in [26] as a perturbative
correction to the BFKL Green’s function. Even though �̂

corr. is suppressed by a factor of ↵2
s

,
enhancement by ln(1/x) will eventually compensate for the smallness of the strong coupling
constant and invalidate the perturbative expansion. The behavior of the HSS-dipole cross-
section is studied in Fig. 2. To identify the relevant region in dipole size r for J/ photo-
production we further define
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as the z-integrated wave function overlap. Working with a fixed hard scale M

2 = 3.27 GeV2

we find in Fig. 2, that the perturbative expansion is well under control for a typical HERA x

value of x = 3.55 ·10�4 (Fig. 2.a). Turning however to the lowest x values probed at the LHC
of x = 2.81·10�6 (Fig. 2.b) we observe that the correction term is generally large; for certain r

values, which are further enhanced through the r-dependence of W (r), they even super-seed
the dominant term, resulting into a negative dipole cross-section. While the dipole cross-
section is not an observable, this clearly indicates a breakdown of the perturbative expansion
for dipole sizes where the integrated wave function overlap W (r) has its maximum value. The
problem of unnaturally large higher order corrections can be fixed by choosing a hard scale
related to the transverse size of the dipole. Following the scale setting used in fits [51] of the
IP-sat model [52], we may therefore chose M

2 = 4
r

2 + µ

2
0 with µ

2
0 = 1.51 GeV2. With this

scale, we find that the perturbative expansion indeed stabilizes: both for the HERA (Fig. 2.c)
and LHC x-values (Fig. 2.d) the perturbative term is well under control. Turning with this
choice for the hard scale however to data, we find that this scale setting (green dashed line
in Fig. 1) describes very well the energy dependence of ⌥-photo-production as well as J/ 
photo-production in the HERA region W < 300 GeV, but fails to describe J/ production
at the LHC (W > 300 GeV). The resulting growth with energy is too strong and the data are
no longer described (Fig. 1, top). We therefore conclude that NLO BFKL evolution can only
describe data in the region W > 300 GeV if one accepts very large perturbative corrections,
which super-seed for certain dipole sizes the dominant term and which slow down the growth
of the cross-section. If the size of these perturbative corrections is reduced using an suitable
hard scale, the growth of the HSS-gluon is too strong and cannot be accomodated by data.

The KS-gluon, which is subject to LO-BK evolution with collinear resummation provides
a very good description of J/ data in the region W > 300 GeV. To answer the question
whether this description relies on the presence of non-linear terms in the evolution equation,
we compare in addition to a linearized KS gluon (dashed black line in Fig. 1). We find that

9

= scale choice used in IPsat dipole model [Bartels, Golec-Biernat, Kowalksi, hep-ph/0203258];  
fit: [Rezaeian, Siddikov, Van de Klundert, Venugopalan; 1212.2974]
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Results II

• works well for ϒ & J/𝜓 in 
HERA region (W < 400GeV) 

• overshoots J/𝜓 data in 
LHC region (W > 500GeV) 
→ growth is too strong 

• also shown: linear KS 
gluon → growth too 
strong for both ϒ & J/𝜓 
 
→ non-linear terms are 
essential for KS 
description of data

ϒ as perturbative control:



Summary and Conclusion
• NLO BFKL (linear evolution) only describes data if 

(negative) perturbative corrections is larger than 
the leading term (= breakdown of expansion) 

• Tame size of correction → description of ϒ and J/𝜓 
in HERA region, growth too strong for J/𝜓 at LHC 

• non-linear KS gluon describes data & non-linear 
terms essential 

= a strong indication for the on-set of non-linear 
dynamics



Possible limitations
• as long as the “correction 

term” is under control, x-
dependence of NLO BFKL 
gluon stable  
→ control theory uncertainty  
[Bautista, MH, Fernandez-Tellez;1607.05203 ] 

• for this observable = this is 
how the onset of gluon 
saturation would like 

• NLO accuracy for both 
non-linear evolution, wave 
functions for VM 
production + DIS fit highly 
desirable 

• extraction of 𝜸p an own 
challenge (gap survival 
factors etc.)→ how well 
do we control the errors?

→ need to complete picture with more observable & 
higher theoretical accuracy;  
→ so far: most direct evidence for  gluon saturation
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have been resumed through employing a Brodsky-Lepage-Mackenzie (BLM) optimal scale
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we find in Fig. 2, that the perturbative expansion is well under control for a typical HERA x

value of x = 3.55 ·10�4 (Fig. 2.a). Turning however to the lowest x values probed at the LHC
of x = 2.81·10�6 (Fig. 2.b) we observe that the correction term is generally large; for certain r

values, which are further enhanced through the r-dependence of W (r), they even super-seed
the dominant term, resulting into a negative dipole cross-section. While the dipole cross-
section is not an observable, this clearly indicates a breakdown of the perturbative expansion
for dipole sizes where the integrated wave function overlap W (r) has its maximum value. The
problem of unnaturally large higher order corrections can be fixed by choosing a hard scale
related to the transverse size of the dipole. Following the scale setting used in fits [51] of the
IP-sat model [52], we may therefore chose M
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scale, we find that the perturbative expansion indeed stabilizes: both for the HERA (Fig. 2.c)
and LHC x-values (Fig. 2.d) the perturbative term is well under control. Turning with this
choice for the hard scale however to data, we find that this scale setting (green dashed line
in Fig. 1) describes very well the energy dependence of ⌥-photo-production as well as J/ 
photo-production in the HERA region W < 300 GeV, but fails to describe J/ production
at the LHC (W > 300 GeV). The resulting growth with energy is too strong and the data are
no longer described (Fig. 1, top). We therefore conclude that NLO BFKL evolution can only
describe data in the region W > 300 GeV if one accepts very large perturbative corrections,
which super-seed for certain dipole sizes the dominant term and which slow down the growth
of the cross-section. If the size of these perturbative corrections is reduced using an suitable
hard scale, the growth of the HSS-gluon is too strong and cannot be accomodated by data.

The KS-gluon, which is subject to LO-BK evolution with collinear resummation provides
a very good description of J/ data in the region W > 300 GeV. To answer the question
whether this description relies on the presence of non-linear terms in the evolution equation,
we compare in addition to a linearized KS gluon (dashed black line in Fig. 1). We find that
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proton  & dipole impact 
factors



Meson m

f

/GeV N
T

R2/GeV�2
M

V

/GeV

J/ m

c

= 1.4 0.596 2.45 3.097
⌥ m

b

= 4.2 0.481 0.57 9.460

Table 1: Parameters of the boosted Gaussian vector meson wave functions for J/ and ⌥ [14,16].
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where �
qq̄

denotes the inclusive dipole cross-section which is related to the unintegrated gluon
density F through [33]
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In [25] this expression has been used to calculate the BFKL impact factor in transverse Mellin
space from the light-front wave function overlap Eq. (7). In the following study we chose a
slightly di↵erent route and calculate the dipole cross-section directly from the regarding KS
and HSS unintegrated gluon densities. For a detailed discussion of the framework underlying
both gluon distributions we refer to the literature: [28, 29] (KS) and [26,34] (HSS).

2.2 Numerical results using standard implementations

The main uncertainty left is the scale at which the strong coupling constant ↵
s

is to be
evaluated in Eq. (10). In the case of the J/ , which is characterized by a relatively small
hard scale m
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' 1.4 GeV and therefore large value of the strong coupling constant ↵
s

' 0.31,
this is leads to a sizable ambiguity in the normalization of the total cross-section, since the
latter depends through Eq. (1) quadratically on ↵

s

. Using similar conventions as used in
original fits of the KS and HSS gluon distributions, we fix this scale to a typical hard scale of
the process. For the KS gluon we chose both for the photo-production of ⌥ and J/ vector
mesons, the mass of the respective heavy quark as the hard scale; for the HS-gluon it was
found in [25] that a scale related to the size of the J/ wave function is more suitable in the
case of J/ -production, MHS

J/ = 8/R2
J/ = 3.27 GeV while we use the bottom quark mass

for ⌥-production. The results of our study for the fixed scale case can be found in Fig. 1,
where continuous, black lines correspond to the KS-gluon and dotted, green lines to the HS-
gluon at fixed scales; the dashed green lines, corresponding to a special scale setting of the
HSS gluon, and the linear KS-gluon will be discussed in the forthcoming section. We observe
that both the KS-gluon distribution and the HSS-gluon distribution provide an excellent
description of the energy dependence of the data. While the KS-gluon requires in the current
study a K-factor of 1.4 � 1.5, we note that the size of such a correction strongly depends
on the precise scale choice of the strong coupling constant and the precise parametrization
used for the t-slope parameter B

D

, Eq. (2). Indeed, using the parametrization of the B

D

parameter suggested in [16], would bring the K-factor of the KS-gluon close to one in the
case of ⌥-photo-production. We further note that our study does not include a frequently
employed phenomenological corrective factor which can be determined through relating the
inclusive collinear gluon distribution to generalized parton distribution through a Shuvaev
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Following [21, 22], we use for the numerical values ↵

0 = 0.06 GeV�2, W0 = 90 GeV and

b

J/ 
0 = 4.9 GeV�2 in the case of the J/ , while b

⌥
0 = 4.63 GeV�2 for ⌥ production. The

total cross-section for vector meson production is therefore obtained as
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The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular
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As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]
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where N (x, r, b) is the dipole amplitude and T denotes transverse polarization of the quasi-
real photon. Here
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with ✏

2 = m

2
f

for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and ê

f

= 2/3, �1/3. For the scalar parts of the wave functions �

T,L

(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �

T

(r, z), has the following
general form [18,32],
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The free parameters N
T

and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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the transition photon  → quark-antiquark dipole 
→ vector meson
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and

f(�, Q0, �, r) =
r

2 · ⇡�(�)�(� � �)

N

c

(1� �)�(2� �)�(�)
(12)

is a function which collects both factors resulting from the proton impact factor and the
transformation of the unintegrated gluon density to the dipole cross-section, see [25, 26] for
details. The parameters Q0 = 0.28 GeV, C = 2.29 and � = 6.5 have been determined from
the HERA data fit. Furthermore ↵̄

s

= ↵

s

N

c

/⇡ with N

c

the number of colors, and �(�,M2) is
the next-to-leading logarithmic (NLL) BFKL kernel after collinear improvements; in addition
large terms proportional to the first coe�cient of the QCD beta function, �0 = 11N

c

/3�2n
f

/3
have been resumed through employing a Brodsky-Lepage-Mackenzie (BLM) optimal scale
setting scheme [50]. The NLL kernel with collinear improvements reads
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2
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2
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2
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0
0 (�)�0 (�) + �RG(↵̄s

, �, ã, b̃). (13)

where �
i

, i = 0, 1 denotes the LO and NLO BFKL eigenvalue and �RG resums (anti-)collinear
poles to all orders; for details about the individual kernels see [25, 26]. The scale M is a
characteristic hard scale of the process. The second contribution �̂

corr. is proportional to
�0 and acts in �-space as a di↵erential operator on the impact factors of external particles.
These terms do not exponentiate and have been therefore treated in [26] as a perturbative
correction to the BFKL Green’s function. Even though �̂corr. is suppressed by a factor of ↵2

s

,
enhancement by ln(1/x) will eventually compensate for the smallness of the strong coupling
constant and invalidate the perturbative expansion. The behavior of the HSS-dipole cross-
section is studied in Fig. 2. To identify the relevant region in dipole size r for J/ photo-
production we further define

W (r) = 2⇡r

Z 1

0

dz

4⇡
( ⇤

V

 )
T

(r, z), (14)
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boosted Gaussian scalar wave function using Brodsky-Huang-
Lepage  prescription

parameters fitted by [Armesto, 

Rezaeian; 1402.4831] (J/𝛹) and 
[Goncalves, Moreira,Navarra;1408.1344 ] (ϒ)


