David Horák

on behalf of the ALICE Colaboration FNSPE CTU in Prague

LHCP CONFERENCE 2019

Recent **ALICE** results on ultra-peripheral collisions

Puebla, Mexico 2019

What is inside hadrons?

- The structure of a proton is described by a parton distribution function
 - At low Bjorken-x the proton structure is dominated by gluons

•
$$x = \frac{M_V}{\sqrt{S_{NN}}} \exp(-y)$$

- The number of gluons cannot grow indefinitely
 - Recombination will appear and balance it = saturation

 Nucleus is not a sum of nucleons => Nuclear shadowing

What are ultra-peripheral collisions (UPC)?

- EM field of a **relativistic particle** acts as a beam of quasi-real photons
 - Intensity of the EM field proportional to Z_1^2 or Z_2^2
 - Two potential sources and two potential targets
- Impact parameter b > sum of radii
 - Ultra-peripheral collision
 - Hadronic interaction suppresed
- Type of interactions (photoproduction):
 - photon photon
 - photon nucleus (proton)

Vector meson photoproduction in UPC

The ALICE Detector

Central Barrel

Forward Muon Spectrometer

David Horák

Veto and neutrons

J/ψ in p-Pb: looking inside the proton...

arXiv:1809.03235v1 [nucl-ex] (Accepted for publication in EPJC)

David Horák

Recent ALICE results on ultra-peripheral collisions

J/ψ in p-Pb: looking inside the proton...

arXiv:1809.03235v1 [nucl-ex] (Accepted for publication in EPJC)

arXiv:1809.03235v1 [nucl-ex] (Accepted for publication in EPJC)

Coherent ρ^0 production in Pb-Pb

- Physics of coherent photoproduction of ρ^0 :
 - dynamics of QCD at a semi-hard scale
 - Large cross section: possibility to study the approach to the black disk limit of QCD
- ALICE PbPb measurements at $\sqrt{s_{NN}} = 2.76$ TeV JHEP 1509 (2015) 095

- Highlights of the new measurement (PbPb 2015 at $\sqrt{s_{NN}} = 5.02$ TeV)
 - More data, better precision
 - Possibility to measure ω contribution
 - Rapidity dependence of the cross section
 - Measurement for different classes of forward neutron activity: possibility to extract the energy dependence of the cross section

Coherent ρ^0 production in Pb-Pb (Preliminary Run 2)

David Horák

Recent ALICE results on ultra-peripheral collisions

14

EPJC73 (2013) 2617

New and more precise data from Run 2 at a higher energy on the way! Stay tuned!

J/ψ forward at large rapidities

Coherent J/ ψ cross section in agreement with moderate nuclear gluon shadowing

Recent ALICE results on ultra-peripheral collisions

J/ψ in peripheral PbPb collisions

- Interpreted as coherent J/ψ production
- How can the coherence condition survive when both nuclei are broken by the hadronic interaction?

J/ψ in peripheral PbPb collisions

ALICE

- Increased statistics in Run 2
- Measured cross section of the coherent J/ψ
 - Central + forward rapidities

David Horák

- ALICE is an excellent detector to investigate QCD using UPC.
 - ALICE has measured exclusive J/ψ production off protons continuously for γ-p energies from 20 to 700 GeV in Run 1. It will reach well above 1 TeV with Run 2 data.
 - ALICE studies the approach to the black-disk limit of QCD with coherent ρ^0 production in Pb-Pb UPC.
- Data are consistent with models containing moderate shadowing.
- Data from Run 3+4 will allow us to access the gluon structure functions down to $x \approx 10^{-5}$.
- Stay tuned for upcoming results!

Thank you for your attention!

This work has been partially supported by the grant 18-07880S of the Czech Science Foundation (GACR).

Backup Slides

David Horák

J/ψ to pp

- First observation in UPC
- Run 2 data

ALI-PREL-117138

