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OUTLINE

» High energy physics + machine learning

» CMS open data as ML reference datasets & challenge
» Examples of ML using CMS open data
» ML-dedicated open data release

» Pixel tracking studies

» Higgs to bb tagging

» Summary and outlook
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» Machine learning was vital to make

big discoveries like the Higgs boson
on July 4,2012

With machine-learning
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REFERENCE DATA SETS FOR HEP + ML

» Engage ML community for interesting, realistic tasks in
experimental HEP


https://indico.cern.ch/e/ml4jets2018
https://indico.cern.ch/event/742793
https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit?usp=sharing
https://www.kaggle.com/c/trackml-particle-identification/overview

REFERENCE DATA SETS FOR HEP + ML 4

» Engage ML community for interesting, realistic tasks in
experimental HEP

» Calls at ML4Jets and Connecting the Dots workshops for
more public HEP data sets with real detector simulation for
ML applications G

» Example: data set for top tagging @
based on Pythia+Delphes |

» Example: data set for tracking
based on ACTS
(kaggle TrackML challenge)
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REFERENCE DATA SETS FOR HEP + ML 4

» Engage ML community for interesting, realistic tasks in
experimental HEP

» Calls at ML4Jets and Connecting the Dots workshops for
more public HEP data sets with real detector simulation for
ML applications T

» Example: data set for top tagging §
based on Pythia+Delphes |

» Example: data set for tracking
based on ACTS
(kaggle TrackML challenge)

» Can CMS open data fill this role for many ML applications?


https://indico.cern.ch/e/ml4jets2018
https://indico.cern.ch/event/742793
https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit?usp=sharing
https://www.kaggle.com/c/trackml-particle-identification/overview
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of open data from particle physics!
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http://opendata.cern.ch/

ML USING OPEN DATA & SIMULATION 6

Open data & simulation is also useful for ML-focused studies,
e.g. kaggle ATLAS H—T1T challenge: http://opendata.cern.ch/record/328

Most existing efforts based on reducing AOD/MINIAOD samples
» Requires CMS domain knowledge, CMS software, ...

Convolutional neural networks image-based event classification
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ML-DEDICATED OPEN DATA RELEASE 3

http://opendata-dev.web.cern.ch/search?keywords=datascience&experiment=CMS&type=Dataset

open °
CERN

Dataset x  CMS x  datascience x Sample with jet properties for jet-flavor and other jet-related ML studies
JetNTuple_QCD_Runll_13TeV_MC
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The dataset consists of particle jets extracted from simulated proton-proton collision events at a
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http://opendata-dev.web.cern.ch/search?keywords=datascience&experiment=CMS&type=Dataset

TASK: PIXEL TRACKING

» Early stage of tracking: generation of pixel hit doublets
(seeds for tracks)

n——

-1.5 -1.3 -1.1 -0.9 -0.7 05 -03 -01 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
1 ~ N N AN \ \ \ | | / / / / v ~ ~ .
2 L | —=——=e NIRRE — T
T — 800 21 ——o—9o 900 —0o—
23 — o0 I|| || ||| I| I| IIl I|| I| I| ||| || |I ||| ||| ||| ||I || ||| — 23 — S0
0 — | S L — 2 —0—0—0—0—0—0
Tz i I |J| T’b‘l = il -.Wd |.' ||'| b —%-eo0o0o—o0oo0o—0o—
rmim) —_— — o0 o0o0o0o0o0o0—
: TEC- . == |PKEL|  TEC+
200 N e Sl = | L
wo | 4y ] TID SR =0, %
soo |0 L L L] 0 I I B
oo ||| || ||| || || || ||| || || ||I || || ||| ||| ||| ||| || |||
TOB j
00 ||| | f | ]| INEEEEE Seeding

-1200
-2600 -2200 -1800 -1400 -1000 -600 -200 200 600 1000 1400 1800 2200 2600
z(mm) ——

Doublet Cellular
generation Automaton

» Doublet generation: bottleneck due to combinatorial
background!

» O(105) fake doublets produced with O(103) true doublets



PIXEL TRACKING DATASET 10

Sample with tracker hit information for tracking algorithm ML studies
TTbar_13TeV_PU50_PixelSeeds

Di Florio, Adriano; Pantaleo, Felice; Pierini, Maurizio;

[ cms | cern-LHC ] Parent Dataset: TTToHadronic_TuneCP5_13TeV-powheg-pythia8 in FEVTDEBUGHLT format for LHC Phase? studies

Description

The dataset consists of a collection of pixel doublet seeds, i.e. the hit pairs that could belong to the same particle. The compatibility between two hits
is evaluated only on the basis of geometrical considerations, such as cuts in n, ¢ and r. These doublets define the building blocks for further tracks.
Each doublet is charcaterised by a set of features, such as its coordinates and the charge released in ther Pixel detector, and the pixel cluster shape,
projected on 2D histogram.

These data can be used in one of the first steps of the track finding workflow, which is the creation of track seeds, i.e. compatible pairs of hits from
different detector layers, that are subsequently fed to to higher level pattern recognition steps. However the set of compatible hit pairs is highly
affected by combinatorial background resulting in the next steps of the tracking algorithm to process a significant fraction of fake doublets.

» Derived dataset (HDF5):
http://opendata-dev.web.cern.ch/record/12320

» 3547 files, 200 GB, 650 million total entries (doublet pixel hits)

» Doublet features, e.g. coordinates, charge released in pixel
detector, and the pixel cluster shape (2D histogram)



http://opendata-dev.web.cern.ch/record/12320

IML Talk

EXAMPLE: CNN FOR DOUBLET GENERATION CTD Talk 1

» Convolutional neural networks can be used identify good doublets
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https://indico.cern.ch/event/668017/contributions/2947009/
https://indico.cern.ch/event/742793/contributions/3298727

EXAMPLE: CNN FOR DOUBLET GENERATION
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TASK: TAGGING H(BB) JETS 12
oroduce detect
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» Biggest Higgs decay mode is
H—bb

» ggF high-pt Higgs production g _, w+w-
may be sensitive to new 22%

physics
» Large QCD background...



THE PROBLEM 1S, THERE'S LOTS OF OTHER

WAYS You CAN MAKE TWO BOTTOM QUARKS:

JORGE CHAM © 2012

THE THING 15, WE
CAN'T SEE INSIDE
THESE REACTIONS...

q

(TS ONE OF THE MOST
COMMON THINGS TO MAKE.

AND WHAT You
WANT TO KNow lé)

HIGGS EXIST?

—




TASK: TAGGING H(BB) JETS

14

» Handles:

b hadrons have long lifetimes:
travel O(mm) before decay!

H(bb) jet

jet

PV



TASK: TAGGING H(BB) JETS

14

» Handles:

» secondary vertices

b hadrons have long lifetimes:
travel O(mm) before decay!




TASK: TAGGING H(BB) JETS

14

b hadrons have long lifetimes:
travel O(mm) before decay!

» Handles:

displaced

» secondary vertices tracks

» displaced tracks
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TASK: TAGGING H(BB) JETS

14

b hadrons have long lifetimes:
travel O(mm) before decay!

» Handles:

displaced

tracks charged

» secondary vertices
lepton

» displaced tracks

» jet substructure

RS
RS
~



H(BB) DATASET

Sample with jet, track and secondary vertex properties for Hbb tagging ML studies

HiggsToBBNTuple_HiggsToBB_QCD_Runll_13TeV_MC

Duarte, Javier;

[ osase ] Doued ] owasience ] o | cemteisic

Parent Dataset: /BulkGravTohhTohbbhbb_narrow_M-600_13TeV-madgraph/RunliSummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6_ext1-vi/MINIAODSIM

Description

The dataset consists of particle jets extracted from simulated proton-proton collision events at a center-of-mass energy of 13 TeV generated with

(both charged and neutral) PF candidates with pT > 0.95 GeV associated to the AKS8 jet are provided. Additional features of charged PF candidates
(formed primarily by a charged particle track) with pT > 0.95 GeV associated to the AK8 jet are also provided. Finally, additional features of
reconstructed secondary vertices (SVs) associated to the AK8 jet (within AR < 0.8) are also provided.

» Derived datasets (ROOT & HDF5):
http://opendata-dev.web.cern.ch/record/12102

» 182 files, 245 GB, 18 million total entries (jets)

» event features, e.g. MET, p (average density)

> jet features, e.g. mass, pt, N-subjettiness variables
» particle candidate features, e.g. pt, n, ¢ (for up to 100 particles)
» charged particle / track features, e.g. impact parameter (for up to 60 tracks)

» secondary vertex features, e.g. flight distance (for up to 5 vertices)

15

About ¥



http://opendata-dev.web.cern.ch/record/12102

JINST 13 (2018) PO5011

CMS DEEP DOUBLE-B TAGGING DP-2018/033 16

» Deeper neural network with track and secondary vertex inputs
in convolutional (1D CNN) and recurrent (GRU) network

» Large performance gain

] ] o0 CMS Simulation Preliminary 2016 (13 TeV)
over previous algorithm S [ a0 jetpr <200GeY e
. . = | 40 < jet mgp < 200 GeV
(BDT with hlgh-|eve| & | —— DeepDoubleBvL, AUC = 97.3%
g double-b, AUC = 91.3%
features) E:
§ 10 1_— ]
- x2.2 better
. signal
- efficiency
10-2— s— . _
x10 better |
background -
rejection
10865702 036465 o8 o7 o8 98 1o

Tagging efficiency (H — bb)


http://dx.doi.org/10.1088/1748-0221/13/05/P05011
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

CMS DEEP DOUBLE-B TAGGING e s

» Deeper neural network with track and secondary vertex inputs
in convolutional (1D CNN) and recurrent (GRU) network

» Large performance gain
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http://dx.doi.org/10.1088/1748-0221/13/05/P05011
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC

EXAMPLE: SIMPLE NEURAL NETWORK TRAINING 17

https://github.com/cernopendata-datascience/HiggsToBBMachinelearning

» Train fully connected neural network with high level
features in ~30 lines of code

» Similar performance to CMS double-b tagger (BDT) with
1 training file

Layer (type) Output Shape Param # 10° 5
o= ————=—=—=—=—== == == S ——==== ] = AUC = 90.6%
input (InputLayer) (None, 27) 0 ]
bn_1 (BatchNormalization) (None, 27) 108
dense_1 (Dense) (None, 64) 1792 % 107!

)
dense_2 (Dense) (None, 32) 2080 2

0

o
dense_3 (Dense) (None, 32) 1056 o

w
output (Dense) (None, 2) 66 S 1077
Total params: 5,102
Trainable params: 5,048
Non-trainable params: 54

1073

0.0 0.2 0.4 0.6 0.8 1.0
True positive rate


https://github.com/cernopendata-datascience/HiggsToBBMachineLearning

EXAMPLE: INTERACTION NETWORK APPROACH ACAT Poster g

» Architectures like interaction networks can learn representations of
particle-particle and particle-vertex interactions to better identify
H—bb jets

(P-p)4
(P-p)1
(P-p)2 (p-p)s
(P-p)s (P-p)s

(P-v)2  (p-v)s
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https://indico.cern.ch/event/708041/contributions/3272074/

SUMMARY
» Many ML efforts underway using CERN open data

19



SUMMARY 19
» Many ML efforts underway using CERN open data

» New CMS ML-focused release should make open data more
accessible to ML enthusiasts / data scientists

» Not just a set of derived files, full provenance (original files,
open source ntuple code)!

» Simpler to collaborate within and outside of HEP
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!‘ W Pushing the houndaries of Science and Techn()l Ogy

B EEIC has a looming “big data” challenge

» Collaborations with data scientists / ML academics may
help to solve our algorithmic and computing challenges
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PHYSICS ANALYSIS USING OPEN DATA

22

» Open data has been used to perform new searches and

measurements

» Searches for non-standard sources of parity violation in jets
[arXiv:19204.11195]

» Searches for high-pt dimuon
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https://arxiv.org/abs/1904.11195
https://arxiv.org/abs/1902.04222

JET VISION 23

» Re-train ResNet-50 to identify the
origin of jets

» Inputs are jet images = pixelated
versions of calorimeter hits in 2D (n, O)

Note: averaged over 10k jets; 1 jet gives a sparse image
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JET VISION 23

» Re-train ResNet-50 to identify the
origin of jets

» Inputs are jet images = pixelated
versions of calorimeter hits in 2D (n, O)
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NEURAL NETWORK (RECAP) 25

Classic fully connected
architecture

Each input multiplied by a
weight

Weighted values are
summed, bias is added

Nonlinear activation
function is applied

Trained by varying the
parameters to
minimize a loss

function (quantifies Tyt ﬁ

how many mistakes J A sufficiently “wide"” neural network
the network makes)

"——~1 .1  canapproximate any function!




MACHINE LEARNING STEPS

26

» Step 0: Define the problem (choice of loss tunction)



MACHINE LEARNING STEPS
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» Step 0: Define the problem (choice of loss tunction)

L = —ylog(p) + (1-y)log(1-p)

y = 0 (background) or 1 (signal)
p = output of our NN (probability of signal)



MACHINE LEARNING STEPS 26

» Step 0: Define the problem (choice of loss tunction)

L = —ylog(p) + (1-y)log(1-p)

y = 0 (background) or 1 (signal) ifp~y, L~O0(correct!)
p = output of our NN (probability of signal) ifp ~ 1-y, L ~ = (incorrect!)



MACHINE LEARNING STEPS 2

» Step 0: Define the problem (choice of loss tunction)

L = —ylog(p) + (1-y)log(1-p)

y = 0 (background) or 1 (signal) ifp~y, L~O0(correct!)
p = output of our NN (probability of signal) ifp ~ 1-y, L ~ = (incorrect!)

» Step 1: Acquire lots of labeled data and split into training
and testing sets
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» Step 0: Define the problem (choice of loss tunction)
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» Step 1: Acquire lots of labeled data and split into training
and testing sets

» Step 2: Select input features
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» Step 0: Define the problem (choice of loss tunction)
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p = output of our NN (probability of signal) ifp ~ 1-y, L ~ = (incorrect!)

» Step 1: Acquire lots of labeled data and split into training
and testing sets

» Step 2: Select input features

» Step 3: Explore/train different neural network
architectures



MACHINE LEARNING STEPS 2

» Step 0: Define the problem (choice of loss tunction)

L = —ylog(p) + (1-y)log(1-p)

y = 0 (background) or 1 (signal) ifp~y, L~O0(correct!)
p = output of our NN (probability of signal) ifp ~ 1-y, L ~ = (incorrect!)

» Step 1: Acquire lots of labeled data and split into training
and testing sets

» Step 2: Select input features

» Step 3: Explore/train different neural network
architectures

» Step 4: Evaluate performance
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» You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

» Train an algorithm to learn
an approximation of the
optimal solution function
(Machine Learning)
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» You have a task to
accomplish, which can be
represented as a smooth
function from your inputs to
the answer you want

» Train an algorithm to learn
an approximation of the
optimal solution function
(Machine Learning)

» NNs are the best ML solution
on the market today
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. Recurrent Cell

. Memory Cell
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Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM)

27

A mostly complete chart of

Neural Networks
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TRAINING

» A network is trained by
specifying inputs, targets,
and a loss function

» Target is what the network
should learn for that input,
can be a “truth” label
(supervised) or the input
itself (unsupervised)

» Loss function quantifies
how many mistakes the
network makes

» Training is the minimization
of the loss function by
varying the network
parameters

label = label = 0 label = 4
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label label =1 label

label =9

label =1 label = 4
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- Gradient descent

Min = 0.24254087983694048
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