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▸ High energy physics + machine learning 

▸ CMS open data as ML reference datasets & challenge 

▸ Examples of ML using CMS open data 

▸ ML-dedicated open data release 

▸ Pixel tracking studies 

▸ Higgs to bb tagging 

▸ Summary and outlook
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▸ Machine learning was vital to make  
big discoveries like the Higgs boson  
on July 4, 2012  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▸ Machine learning was vital to make  
big discoveries like the Higgs boson  
on July 4, 2012  
 
 

▸ Today, ML is enabling new  
reconstruction, particle identification,  
measurements, and searches never  
thought possible at the LHC
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REFERENCE DATA SETS FOR HEP + ML �4

▸ Engage ML community for interesting, realistic tasks in 
experimental HEP

https://indico.cern.ch/e/ml4jets2018
https://indico.cern.ch/event/742793
https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit?usp=sharing
https://www.kaggle.com/c/trackml-particle-identification/overview
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▸ Engage ML community for interesting, realistic tasks in 
experimental HEP

▸ Calls at ML4Jets and Connecting the Dots workshops for 
more public HEP data sets with real detector simulation for 
ML applications 

▸ Example: data set for top tagging  
based on Pythia+Delphes 

▸ Example: data set for tracking  
based on ACTS  
(kaggle TrackML challenge)
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▸ Engage ML community for interesting, realistic tasks in 
experimental HEP

▸ Calls at ML4Jets and Connecting the Dots workshops for 
more public HEP data sets with real detector simulation for 
ML applications 

▸ Example: data set for top tagging  
based on Pythia+Delphes 

▸ Example: data set for tracking  
based on ACTS  
(kaggle TrackML challenge)

▸ Can CMS open data fill this role for many ML applications?

https://indico.cern.ch/e/ml4jets2018
https://indico.cern.ch/event/742793
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▸ Open data & simulation is also useful for ML-focused studies,  
e.g. kaggle ATLAS H→ττ challenge: http://opendata.cern.ch/record/328 

▸ Most existing efforts based on reducing AOD/MINIAOD samples 

▸ Requires CMS domain knowledge, CMS software, … 

▸ Convolutional neural networks image-based event classification  
[arXiv:1708.07034] 

▸ End-to-end physics  
event classification  
[arXiv:1807.11916] 

▸ End-to-end jet  
classification of quarks  
and gluons  
[arXiv:1902.08276]

ML USING OPEN DATA & SIMULATION �6

https://www.kaggle.com/c/higgs-boson
http://opendata.cern.ch/record/328
https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1807.11916
https://arxiv.org/abs/1902.08276
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ML-DEDICATED OPEN DATA RELEASE �8

‣ 4 derived datasets 
from official 2016 
CMS simulation  
(ROOT & HDF5) 
‣ Jet flavor studies 
‣ Top tagging 
‣ Pixel tracking 

studies 
‣ H(bb) tagging

http://opendata-dev.web.cern.ch/search?keywords=datascience&experiment=CMS&type=Dataset

 

http://opendata-dev.web.cern.ch/search?keywords=datascience&experiment=CMS&type=Dataset


TASK: PIXEL TRACKING �9

‣ Early stage of tracking: generation of pixel hit doublets 
(seeds for tracks)

Track reconstruction @ CMS HLT

Pi
xe
l	H

its Doublets
Seeds

Cellular	
Automaton

Tracks
Fitting

Quadr.

ONLINE  RECONSTRUCTION (HLT)
Practically the same reconstruction procedure as the one run offiline. It has to undergo stringent time
limits :O(100)ms. It is basedonpixel-only reconstruction.

Tracks
Selection

2nd IML Workshop 9-12 April 2018 – CERN – Geneva 02

In CMS, the tracking algorithmconsists of an iterative procedure, inwhich tracks are
reconstructed according to progressively looser quality criteria starting fromhits on the silicon
tracker detector.

Doublets Generation

2nd IML Workshop 9-12 April 2018 – CERN – Geneva 05

Pixel	Hits
Doublet

generation
Cellular	

Automaton
Hits Cells

Doublet seeds generation: bottleneck due to huge combinatorial background.

But doublet selection is basedonly on geometrical compatibilty checks.

For a single 44̅ at ,� = %'TeV with < /0 >	= '#	 simulated event: 7(%&#)doublets produced with fake
ratio~7(%&&) corresponding to :(%&&&) truedoublets.

Track reconstruction @ CMS
In CMS, the tracking algorithmconsists of an iterative procedure, inwhich tracks are
reconstructed according to progressively looser quality criteria starting fromhits on the silicon
tracker detector.

Tracks RECONSTRUCTION @ CMS

Selezione	
Tracce

Seeding Tracks	Building Track	fitting

2nd IML Workshop 9-12 April 2018 – CERN – Geneva 02

‣ Doublet generation: bottleneck due to combinatorial 
background! 

‣ O(105) fake doublets produced with O(103) true doublets



PIXEL TRACKING DATASET �10

‣ Derived dataset (HDF5):  
http://opendata-dev.web.cern.ch/record/12320 

‣ 3547 files, 200 GB, 650 million total entries (doublet pixel hits) 
‣ Doublet features, e.g. coordinates, charge released in pixel 

detector, and the pixel cluster shape (2D histogram)  

http://opendata-dev.web.cern.ch/record/12320


EXAMPLE: CNN FOR DOUBLET GENERATION �11

‣ Convolutional neural networks can be used identify good doublets 

IML Talk 
CTD Talk
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CMS Simulations Preliminary

ttbar event  @  <PU> = 35

Global (x,y,z) = (-18.39,-6.61,0.01)

pdgId = 211

BPix2 - Outer Hit

π+ π+

Each hit is then a 2D pixel image centred on the
centre of charge. (16x16)

Typical pattern recognition problem (true/fake
classification): suitable for a Convolutional Neural
Network approach

Each doublet is built from a couple of hits on the silicon pixel tracker detector. Each hit is not simply a point on the detector but it is a collection of pixels (in 2D) on
or off.

Pixel detector with an O(108) pixels!

Doublets
Seeds

Cellular 
Automaton

Pixel Cluster Cluster Shape Filter

Each pixel is associated with an ADC level
(16 bit) proportional to the charge
deposited by a particle.

Adriano Di Florio CTD/WIT 2019 IFIC Valencia, Spain – 3 April 2019 07

Layer Map Model
A single doublet is a 20 levels image. The model concatenates:
• CNN architecture stack of convolutional layers (4) and max pooling (2)
• DENSE architecture dense layers (2) fed with the 1-dim reduced images + doublets infos (inX,inY,inZ)

Dropouts & Early stopping to prevent overfitting

Train datasets balanced (0.5)

K-Folding
Adriano Di Florio CTD/WIT 2019 IFIC Valencia, Spain – 3 April 2019 10

https://indico.cern.ch/event/668017/contributions/2947009/
https://indico.cern.ch/event/742793/contributions/3298727


EXAMPLE: CNN FOR DOUBLET GENERATION �11

‣ Convolutional neural networks can be used identify good doublets 
‣ Better fake rate and less CPU time
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Layer Map Model
A single doublet is a 20 levels image. The model concatenates:
• CNN architecture stack of convolutional layers (4) and max pooling (2)
• DENSE architecture dense layers (2) fed with the 1-dim reduced images + doublets infos (inX,inY,inZ)

Dropouts & Early stopping to prevent overfitting

Train datasets balanced (0.5)

K-Folding
Adriano Di Florio CTD/WIT 2019 IFIC Valencia, Spain – 3 April 2019 10

Timing and Size Performace

Seeds Size per Layer Pair Downstream Timing (A.U.)Downstream  Time Reduction (%)

What about the timing and pixel seeds collection size?

The outcome of the pixel doublet producer is
much more stable and that this feature may be
used to better tune the subsequent steps.

• Baseline (standards CMSSW on CPU) 
• With CNN FIltering

From an O(1000) to an O(100) <Reduction> ~ 68 %
< "# > = &'
((̅ event

< "# > = &'
((̅ event

CMS Open Data 2018 13 TeV CMS Open Data 2018 13 TeV CMS Open Data 2018 13 TeV

Adriano Di Florio CTD/WIT 2019 IFIC Valencia, Spain – 3 April 2019 17

Fake Rate vs φ Fake Rate vs ηFake Rate vs pT

CMS Open Data 2018 13 TeV
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Physics Performace – Fake Rates

Fake Rate: number of non-matched reconstructed tracks divided by number of reconstructed tracks 

• Baseline (standards CMSSW on CPU) 
• With CNN FIltering
• Ideal (MC “hard” matching)

The fake rate is reduced (overall from ~0.35 to ~0.2)

Adriano Di Florio CTD/WIT 2019 IFIC Valencia, Spain – 3 April 2019 16

CNN
Baseline

Ideal

https://indico.cern.ch/event/668017/contributions/2947009/
https://indico.cern.ch/event/742793/contributions/3298727


TASK: TAGGING H(BB) JETS �12

0.2%
2.6%

6.3%

22%

58%
H → bb

H → γγ
H → ZZ

H → τ+ τ−

H → W+ W−

H → cc
2.9%

11. Status of Higgs boson physics 11

with possible flat directions. Still, physics at lower energies is desirable to solve other
mysteries of the universe such as dark matter or the matter-antimatter asymmetry. The
Higgs boson discovery at the LHC leaves all these options open.

II.4. Higgs production and decay mechanisms

Reviews of the SM Higgs boson’s properties and phenomenology, with an emphasis on
the impact of loop corrections to the Higgs boson decay rates and cross sections, can be
found in Refs. [32–38].

II.4.1. Production mechanisms at hadron colliders

The main production mechanisms at the Tevatron and the LHC are gluon fusion,
weak-boson fusion, associated production with a gauge boson and associated production
with top quarks. Figure 11.2 depicts representative diagrams for these dominant Higgs
production processes.
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Figure 11.2: Generic Feynman diagrams contributing to the Higgs production
in (a) gluon fusion, (b) weak-boson fusion, (c) Higgs-strahlung (or associated
production with a gauge boson) and (d) associated production with top quarks.

The cross sections for the production of a SM Higgs boson as a function of
√

s, the center
of mass energy, for pp collisions, including bands indicating the theoretical uncertainties,
are summarized in Fig. 11.3 [39]. A detailed discussion, including uncertainties in the
theoretical calculations due to missing higher order effects and experimental uncertainties
on the determination of SM parameters involved in the calculations can be found in
Refs. [36–38]. These references also contain state of the art discussions on the impact of
PDF’s uncertainties, QCD scale uncertainties and uncertainties due to different matching
procedures when including higher order corrections matched to parton shower simulations
as well as uncertainties due to hadronization and parton-shower events.

Table 11.1, from Refs. [36,38], summarizes the Higgs boson production cross sections
and relative uncertainties for a Higgs mass of 125GeV, for

√
s = 7, 8 and 14 TeV.
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‣ Biggest Higgs decay mode is 
H→bb 

‣ ggF high-pT Higgs production 
may be sensitive to new 
physics 

‣ Large QCD background…





TASK: TAGGING H(BB) JETS �14

PV
jet

H(bb) jet

b hadrons have long lifetimes:  
travel O(mm) before decay!

‣ Handles: 
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TASK: TAGGING H(BB) JETS �14

PV
jet

SV2 H(bb) jet

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

‣ Handles: 
‣ secondary vertices
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TASK: TAGGING H(BB) JETS �14

PV
jet

SV2

IP2

displaced 
tracks

H(bb) jet

IP1

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

‣ Handles: 
‣ secondary vertices
‣ displaced tracks 
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TASK: TAGGING H(BB) JETS �14

PV
jet

SV2

IP2

charged  
lepton

displaced 
tracks

H(bb) jet

IP1

b hadrons have long lifetimes:  
travel O(mm) before decay!

flight distance

‣ Handles: 
‣ secondary vertices
‣ displaced tracks 
‣ jet substructure



H(BB) DATASET �15

‣ Derived datasets (ROOT & HDF5):  
http://opendata-dev.web.cern.ch/record/12102 

‣ 182 files, 245 GB, 18 million total entries (jets) 
‣ event features, e.g. MET, ρ (average density) 
‣ jet features, e.g. mass, pT, N-subjettiness variables 
‣ particle candidate features, e.g. pT, η, ϕ (for up to 100 particles) 
‣ charged particle / track features, e.g. impact parameter (for up to 60 tracks) 
‣ secondary vertex features, e.g. flight distance (for up to 5 vertices)

http://opendata-dev.web.cern.ch/record/12102


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Tagging efficiency (H ! bb̄)

10�3

10�2

10�1

100

M
is

ta
gg

in
g

ra
te

(Q
C

D
)

2016 (13 TeV)CMS Simulat ion Preliminar y

300 < jet pT < 2000 GeV
40 < jet mSD < 200 GeV

DeepDoubleBvL, AUC = 97.3%
double-b, AUC = 91.3%
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CMS DEEP DOUBLE-B TAGGING �16
JINST 13 (2018) P05011 

DP-2018/033

‣ Deeper neural network with track and secondary vertex inputs 
in convolutional (1D CNN) and recurrent (GRU) network
‣ Large performance gain  

over previous algorithm 
(BDT with high-level  
features)

http://dx.doi.org/10.1088/1748-0221/13/05/P05011
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC
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‣ Deeper neural network with track and secondary vertex inputs 
in convolutional (1D CNN) and recurrent (GRU) network
‣ Large performance gain  

over previous algorithm 
(BDT with high-level  
features)

‣ New approaches?
‣ Deep 2D CNNs  

(ResNet-50), interaction/  
graph neural networks, 
…

http://dx.doi.org/10.1088/1748-0221/13/05/P05011
https://twiki.cern.ch/twiki/bin/view/CMSPublic/BTV13TeVDDBDDC


https://github.com/cernopendata-datascience/HiggsToBBMachineLearning

EXAMPLE: SIMPLE NEURAL NETWORK TRAINING �17

_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
input (InputLayer)           (None, 27)                0          
_________________________________________________________________ 
bn_1 (BatchNormalization)    (None, 27)                108        
_________________________________________________________________ 
dense_1 (Dense)              (None, 64)                1792       
_________________________________________________________________ 
dense_2 (Dense)              (None, 32)                2080       
_________________________________________________________________ 
dense_3 (Dense)              (None, 32)                1056       
_________________________________________________________________ 
output (Dense)               (None, 2)                 66         
================================================================= 
Total params: 5,102 
Trainable params: 5,048 
Non-trainable params: 54 
_________________________________________________________________

‣ Train fully connected neural network with high level 
features in ~30 lines of code 

‣ Similar performance to CMS double-b tagger (BDT) with  
1 training file

https://github.com/cernopendata-datascience/HiggsToBBMachineLearning


EXAMPLE: INTERACTION NETWORK APPROACH �18

‣ Architectures like interaction networks can learn representations of 
particle-particle and particle-vertex interactions to better identify 
H→bb jets
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https://indico.cern.ch/event/708041/contributions/3272074/
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▸ Many ML efforts underway using CERN open data 

▸ New CMS ML-focused release should make open data more 
accessible to ML enthusiasts  / data scientists 

▸ Not just a set of derived files, full provenance (original files, 
open source ntuple code)! 

▸ Simpler to collaborate within and outside of HEP

SUMMARY �19



A VISION OF THE FUTURE �20

▸ LHC has a looming “big data” challenge 

▸ Collaborations with data scientists / ML academics may 
help to solve our algorithmic and computing challenges
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▸ Open data has been used to perform new searches and 
measurements 

▸ Searches for non-standard sources of parity violation in jets 
[arXiv:1904.11195] 

▸ Searches for high-pT dimuon resonances [arXiv:1902.04222]

PHYSICS ANALYSIS USING OPEN DATA �22

https://arxiv.org/abs/1904.11195
https://arxiv.org/abs/1902.04222


JET VISION �23

▸ Re-train ResNet-50 to identify the 
origin of jets 

▸ Inputs are jet images = pixelated 
versions of calorimeter hits in 2D (η, Φ)

vs.

Note: averaged over 10k jets; 1 jet gives a sparse image
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THE LARGE HADRON COLLIDER �24

proton-proton collider @ 13 TeV center-of-mass energy
4 interaction points

40 million collisions / second
trigger selects ~1000 collisions / second

p p

CMS

~10 cm



NEURAL NETWORK (RECAP) �25

ℓk
j = ϕ (∑i wijℓk−1

i + bj)▸ Classic fully connected  
architecture 

▸ Each input multiplied by a 
weight 

▸ Weighted values are 
summed, bias is added 

▸ Nonlinear activation 
function is applied 

▸ Trained by varying the 
parameters to  
minimize a loss  
function (quantifies  
how many mistakes  
the network makes)

ℓk−1
i

wij ℓk
j

A sufficiently “wide” neural network  
can approximate any function!
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MACHINE LEARNING STEPS �26

‣ Step 0: Define the problem (choice of loss function)  
 
 
 

‣ Step 1: Acquire lots of labeled data and split into training 
and testing sets

‣ Step 2: Select input features
‣ Step 3: Explore/train different neural network 

architectures
‣ Step 4: Evaluate performance

L = −y log(p) + (1−y)log(1−p)
y = 0 (background) or 1 (signal) 
p = output of our NN (probability of signal)

if p ~ y,     L ~ 0 (correct!)  
if p ~ 1-y, L ~ ∞ (incorrect!)
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… …

▸ You have a task to 
accomplish, which can be 
represented as a smooth 
function from your inputs to 
the answer you want

▸ Train an algorithm to learn 
an approximation of the 
optimal solution function  
(Machine Learning)

▸ NNs are the best ML solution 
on the market today

▸ Each node performs a 
math operation on the 
input

▸ Edges represent the flow 
of nodes’ inputs & outputs



TRAINING �28

▸ A network is trained by 
specifying inputs, targets,  
and a loss function

▸ Target is what the network 
should learn for that input, 
can be a “truth” label 
(supervised) or the input 
itself (unsupervised)

▸ Loss function quantifies 
how many mistakes the 
network makes

▸ Training is the minimization 
of the loss function by 
varying the network 
parameters


