Measuring CP violation in $b \rightarrow c\tau^- \bar{\nu}_{\tau}$ using excited charm mesons

Daniel Aloni LHCP 2019 – Puebla, Mexico

In collaboration with Yuval Grossman (Cornell), Abner Soffer (TAU) PRD 98 (2018) no.3, 035022, Arxiv: 1804.04146

Why $b \to c \tau^- \bar{\nu}_{\tau}$?

Motivation

 $\equiv \frac{BR(B \to D^{(*)} \tau \bar{\nu})}{BR(B \to D^{(*)} \ell \bar{\nu})} \quad , \quad \ell = \mu, e$ • R($\mathsf{D}^{(*)}$

Motivation

$$\mathbf{R}(\mathbf{D}^{(*)}) \equiv \frac{BR(B \to D^{(*)} \tau \,\overline{\nu})}{BR(B \to D^{(*)} \,\ell \,\overline{\nu})} \quad , \quad \ell = \mu, e$$

- At the quark level: $b
ightarrow c au(\ell) ar{
u}$

- SM: $b
ightarrow c au(\ell) ar{
u}$ transition is mediated by the W boson

Measurement: post-Moriond

• $\sim 3\sigma$ deviation from SM prediction

This is puzzling

If new physics

• Central values are enhanced by 30% compared to SM \rightarrow NP amplitude ~15%-30% compared to SM

• New physics is non-universal and breaks lepton flavor symmetry

• New physics is probably heavy → Can work with an effective theory

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, i.e. $B \to D au ar{
 u}_L$
- A complete set for $b\to c\tau\bar\nu$ transitions contains only four operators
 - $\rightarrow (\bar{e}L)(\bar{u}Q)$
 - $\ \ \, (\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$

 - $\rightarrow (\bar{Q}d)(\bar{e}L)$

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, i.e. $B \to D \tau \bar{\nu}_L$
- A complete set for $b\to c\tau\bar\nu$ transitions contains only four operators
 - $(\bar{e}L)(\bar{u}Q)$
 - $\rightarrow (\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$
 - $\quad (\bar{L}\gamma^{\mu}\tau_{a}L)(\bar{Q}\gamma^{\mu}\tau_{a}Q)$
 - $\rightarrow (\bar{Q}d)(\bar{e}L)$

Why is it interesting to have a phase?

• $R(D^{(*)})$ is puzzling!

• NP breaks LFU at O(1)! Why shouldn't it break CP at O(1)?

• CP violation = NP. No CPV within the SM

Checklist for CPV observables

- In order to observe CP in a decay
 - → Two amplitudes Interference
 - → Weak phase Changes sign under CP
 - Strong phase Doesn't change sign under CP
- For example

$$\mathcal{A} = r_1 e^{i(\delta_1 + \phi_1)} + r_2 e^{i(\delta_2 + \phi_2)}$$

$$\bar{\mathcal{A}} = r_1 e^{i(\delta_1 - \phi_1)} + r_2 e^{i(\delta_2 - \phi_2)}$$

• gives $|\bar{\mathcal{A}}|^2 - |\mathcal{A}|^2 \propto r_1 r_2 \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(B \to D^{(*)} \tau \bar{\nu})|^2$
- Checklist:
- → Two amplitudes
- → Weak phase
- → Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(B \to D^{(*)} \tau \bar{\nu})|^2$
- Checklist:
- → Two amplitudes
- → Weak phase
- → Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(B \to D^{(*)} \tau \bar{\nu})|^2$
- Checklist:
- Two amplitudes
 Weak phase
- → Weak phase
- Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(B \to D^{(*)} \tau \bar{\nu})|^2$
- Checklist:
- → Two amplitudes
- Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)} \bar{\tau} \nu)|^2 - |A(B \to D^{(*)} \tau \bar{\nu})|^2$
- Checklist:

• Two resonances gives strong phase: $Arg\left(\frac{i}{p^2 - m^2 + im\Gamma}\right)$

- What are D^{**} mesons?
 - → The lowest energy charm mesons are D and D*
 - → D^{**} are excited charm mesons

Particle	J^P	m (MeV)	Γ (MeV)	Decay modes
D_0^*	0^{+}	2330	270	$D\pi$
D_1^*	1^{+}	2427	384	$D^*\pi$
D_1	1+	2421	34	$D^*\pi$
D_2^*	2^{+}	2462	48	$D^{*}\pi, \ D\pi$

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D₁ and D₂^{*}, have spin 1 and 2 respectively

- What are D^{**} mesons?
 - → The lowest energy charm mesons are D and D*
 - → D^{**} are excited charm mesons

Particle	J^P	m~(MeV)	Γ (MeV)	Decay modes
D_0^*	0^+	2330	270	$D\pi$
D_1^*	1+	2427	384	$D^*\pi$
D_1	1+	2421	34	$D^*\pi$
D_{2}^{*}	2^+	2462	48	$D^{*}\pi, \ D\pi$

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D₁ and D₂^{*}, have spin 1 and 2 respectively

- What are D^{**} mesons?
 - → The lowest energy charm mesons are D and D*
 - → D^{**} are excited charm mesons

Particle	J^P	m (MeV)	Γ (MeV)	Decay modes
D_0^*	0^+	2330	270	$D\pi$
D_1^*	1+	2427	384	$D^{*}\pi$
D_1	1+	2421	34	$D^*\pi$
D_{2}^{*}	2^+	2462	48	$D^*\pi, \ D\pi$

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D₁ and D₂^{*}, have spin 1 and 2 respectively

- What are D^{**} mesons?
 - → The lowest energy charm mesons are D and D*
 - → D^{**} are excited charm mesons

Particle	J^P	m~(MeV)	Γ (MeV)	Decay modes
D_0^*	0^+	2330	270	$D\pi$
D_1^*	1+	2427	384	$D^*\pi$
D_1	1+	2421	34	$D^*\pi$
D_{2}^{*}	2^+	2462	48	$D^*\pi$. $D\pi$

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D₁ and D₂^{*}, have spin 1 and 2 respectively

- What are D^{**} mesons?
 - → The lowest energy charm mesons are D and D*
 - → D^{**} are excited charm mesons

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D₁ and D₂^{*}, have spin 1 and 2 respectively

Simplified model

• $B \rightarrow D^{**}$ transitions are calculated to LO in the heavy quark limit

• Introduce a single NP operator at a time:

 $O_S = \overline{b}c, \ O_{PS} = \overline{b}\gamma^5 c, \ O_T = \overline{b}\sigma^{\mu\nu}c$

• Integrate over leponic parameters $q^2, \; heta_\ell, \; \phi$

$$\mathcal{A}_{\rm CP} = \frac{\int d\Phi \left(\left| \bar{\mathcal{A}} \right|^2 - \left| \mathcal{A} \right|^2 \right)}{\int d\Phi \left(\left| \bar{\mathcal{A}} \right|^2 + \left| \mathcal{A} \right|^2 \right)}$$

Some cross checks

Some cross checks

Summary

- New observable for CPV in b
ightarrow c au
u transitions

 A ~1-10% is found, depending on the observable, and on the strength and CPV phase of NP

• Can be measured at both Belle II and LHCb

Thank you!

Backup

The SM prediction

- $R^{SM}(D) = 0.299 \pm 0.003$, $R^{SM}(D^*) = 0.258 \pm 0.005^*$
- How do we know that so well?
 - → Semileptonic
 - Unknown parameters cancel in the ratio
 - → In the heavy quark limit $m_b, m_c \rightarrow \infty$, we have only phase space suppression
 - → In the degenerate lepton masses limit $m_{ au} o m_{\ell}$, R(D)=R(D*)=1
- We know to expand systematically around this small parameters

* HFLAV Average

Measurement: pre-Moriond

• $\sim 4\sigma$ deviation from SM prediction

Results

Triple product – Four body decay

- Four body decay depends on five kinematical variables
- Two invariant masses, three angles

Previous ideas for measuring CPV

• Duraisamy and Datta (1302.7031) $D^*(\to D\pi)\ell^-\nu_\ell$

• Hagiwara, Nojiri, Sakaki (1403.5892) $\overline{B}(p_B) \longrightarrow D(p_D)\tau^-(p_\tau)\overline{\nu_\tau}(p_{\nu_1})$ $\downarrow \longrightarrow V^-(Q_{2,3})\nu_\tau(p_{\nu_2})$ $\downarrow \longrightarrow \pi^-(p_1)\pi^0(p_2)$ $\pi^+(p_1)\pi^-(p_2)\pi^-(p_3)$ $\pi^-(p_1)\pi^0(p_2)\pi^0(p_3)$

- Requires knowledge of τ angular distribution
- Requires au hadronic decays