Measuring CP violation in $b \to c\tau^- \bar{\nu}_{\tau}$ using excited charm mesons

Daniel Aloni LHCP 2019 – Puebla, Mexico

In collaboration with Yuval Grossman (Cornell), Abner Soffer (TAU) PRD 98 (2018) no.3, 035022, Arxiv: 1804.04146

Why $b \rightarrow c \tau^- \bar{\nu}_{\tau}$?

Daniel Aloni, Weizmann institute of Science 2

Motivation

 $\equiv \frac{BR(B \to D^{(*)}~\tau~\bar{\nu})}{BR(B \to D^{(*)}~\ell~\bar{\nu})}~~,~~\ell=\mu,e$ $\mathrm{D}^{(*)})$ \cdot R(

Motivation

•
$$
R(D^{(*)}) \equiv \frac{BR(B \to D^{(*)} T \bar{\nu})}{BR(B \to D^{(*)} \ell \bar{\nu})}, \quad \ell = \mu, e
$$

• At the quark level: $b\to c\tau(\ell)\bar\nu$

• SM: $b \to c\tau(\ell)\bar{\nu}$ transition is mediated by the W boson

Measurement: post-Moriond

 $\bullet \sim 3\sigma$ deviation from SM prediction

This is puzzling

If new physics

• Central values are enhanced by 30% compared to SM \rightarrow NP amplitude ~15%-30% compared to SM

• New physics is non-universal and breaks lepton flavor symmetry

• New physics is probably heavy \rightarrow Can work with an effective theory

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, *i.e.* $B \to D \tau \bar{\nu}_L$
- A complete set for $b\to c\tau\bar{\nu}$ transitions contains only four operators
	- \rightarrow $(\bar{e}L)(\bar{u}Q)$
	- $\phi \in (\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$
	- $\longrightarrow (\bar{L}\gamma^{\mu}\tau_{a}L)(\bar{Q}\gamma^{\mu}\tau_{a}Q)$
	- $\rightarrow (\bar{Q}d)(\bar{e}L)$

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, *i.e.* $B \to D \tau \bar{\nu}_L$
- A complete set for $b\to c\tau\bar{\nu}$ transitions contains only four operators
	- \rightarrow $(\bar{e}L)(\bar{u}Q)$
	- $\phi \in (\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$
	- $\rightarrow (\bar{L}\gamma^{\mu}\tau_{a}L)(\bar{Q}\gamma^{\mu}\tau_{a}Q)$
	- $\rightarrow (\bar{Q}d)(\bar{e}L)$

Why is it interesting to have a phase?

 $\cdot R(D^{(*)})$ is puzzling!

• NP breaks LFU at O(1)! Why shouldn't it break CP at O(1)?

• CP violation $= NP$. No CPV within the SM

Checklist for CPV observables

- In order to observe CP in a decay
	- ➔ Two amplitudes Interference
	- ➔ Weak phase Changes sign under CP
	- ➔ Strong phase Doesn't change sign under CP
- For example

$$
\mathcal{A} = r_1 e^{i(\delta_1 + \phi_1)} + r_2 e^{i(\delta_2 + \phi_2)} \n\bar{\mathcal{A}} = r_1 e^{i(\delta_1 - \phi_1)} + r_2 e^{i(\delta_2 - \phi_2)}
$$

• gives
 $|\overline{\mathcal{A}}|^2 - |\mathcal{A}|^2 \propto r_1 r_2 \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)}\bar{\tau}\nu)|^2 - |A(B \to D^{(*)}\tau\bar{\nu})|^2$
- Checklist:
- ➔ Two amplitudes
- ➔ Weak phase
- ➔ Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)}\bar{\tau}\nu)|^2 - |A(B \to D^{(*)}\tau\bar{\nu})|^2$
- Checklist:
- → Two amplitudes
- ➔ Weak phase
- ➔ Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)}\bar{\tau}\nu)|^2 - |A(B \to D^{(*)}\tau\bar{\nu})|^2$
- Checklist:
- → Two amplitudes
- ➔ Weak phase
- ➔ Strong phase

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)}\bar{\tau}\nu)|^2 - |A(B \to D^{(*)}\tau\bar{\nu})|^2$
- Checklist:
- ➔ Two amplitudes
- ➔ Weak phase
- **→ Strong phase**

- The most naive observable $\mathcal{A}_{CP} \propto |A(\bar{B} \to \bar{D}^{(*)}\bar{\tau}\nu)|^2 - |A(B \to D^{(*)}\tau\bar{\nu})|^2$
- Checklist:

• Two resonances gives strong phase: $Arg\left(\frac{i}{p^2-m^2+im\Gamma}\right)$

- What are D^{**} mesons?
	- ➔ The lowest energy charm mesons are D and D*
	- → D^{**} are excited charm mesons

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D_1 and D_2^* , have spin 1 and 2 respectively

- What are D^{**} mesons?
	- ➔ The lowest energy charm mesons are D and D*
	- → D^{**} are excited charm mesons

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D_1 and D_2^* , have spin 1 and 2 respectively

- What are D^{**} mesons?
	- ➔ The lowest energy charm mesons are D and D*
	- → D^{**} are excited charm mesons

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D_1 and D_2^* , have spin 1 and 2 respectively

- What are D^{**} mesons?
	- ➔ The lowest energy charm mesons are D and D*
	- → D^{**} are excited charm mesons

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D_1 and D_2^* , have spin 1 and 2 respectively

- What are D^{**} mesons?
	- ➔ The lowest energy charm mesons are D and D*
	- → D^{**} are excited charm mesons

- Out of four D^{**}, two are narrow and can decay to the same final state
- This two resonances, D_1 and D_2^* , have spin 1 and 2 respectively

Simplified model

• $B \to D^{**}$ transitions are calculated to LO in the heavy quark limit

• Introduce a single NP operator at a time:

 $O_S = \overline{b}c$, $O_{PS} = \overline{b}\gamma^5 c$, $O_T = \overline{b}\sigma^{\mu\nu}c$

• Integrate over leponic parameters q^2 , θ_{ℓ} , ϕ

$$
\mathcal{A}_{\mathrm{CP}} = \frac{\int d\Phi \left(\left| \mathcal{\bar{A}} \right|^2 - \left| \mathcal{A} \right|^2 \right)}{\int d\Phi \left(\left| \mathcal{\bar{A}} \right|^2 + \left| \mathcal{A} \right|^2 \right)}
$$

Some cross checks

• No asymmetry without weak phase

Some cross checks

Summary

• New observable for CPV in $b\to c\tau\nu$ transitions

 \bullet A \sim 1-10% is found, depending on the observable, and on the strength and CPV phase of NP

• Can be measured at both Belle II and LHCb

Thank you!

Daniel Aloni, Weizmann institute of Science

Backup

Daniel Aloni, Weizmann institute of Science 35 and 35

The SM prediction

- $R^{SM}(D) = 0.299 + 0.003$ $R^{SM}(D^*) = 0.258 + 0.005$ ^{*}
- How do we know that so well?
	- ➔ Semileptonic
	- ➔ Unknown parameters cancel in the ratio
	- \rightarrow In the heavy quark limit $m_b, m_c \rightarrow \infty$, we have only phase space suppression
	- \rightarrow In the degenerate lepton masses limit $m_\tau \rightarrow m_\ell$, R(D)=R(D*)=1
- We know to expand systematically around this small parameters

* HFLAV Average

Daniel Aloni, Weizmann institute of Science 36 and 37 and 37 and 37

Measurement: pre-Moriond

 $\bullet \sim 4\sigma$ deviation from SM prediction

Results

Triple product – Four body decay

- Four body decay depends on five kinematical variables
- Two invariant masses, three angles

Previous ideas for measuring CPV

• Duraisamy and Datta (1302.7031) $D^*(\to D\pi)\ell^-\nu_\ell$

● Hagiwara, Nojiri, Sakaki (1403.5892) $\overline{B}(p_B) \longrightarrow D(p_D) \tau^-(p_\tau) \overline{\nu_\tau}(p_{\nu_1})$ $\rightarrow V^-(Q_{2,3})\nu_\tau(p_{\nu_2})$
 $\rightarrow \pi^-(p_1)\pi^0(p_2)$ $\pi^+(p_1)\pi^-(p_2)\pi^-(p_3)$ $\pi^-(p_1)\pi^0(p_2)\pi^0(p_3)$

- Requires knowledge of τ angular distribution
- Requires τ hadronic decays