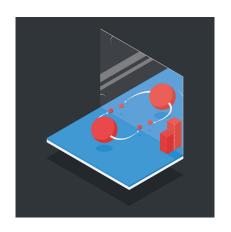
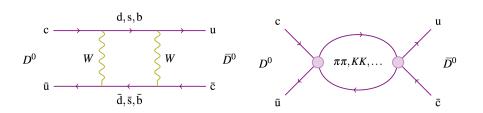
Mixing and CP Violation in Charm at LHCb

Martha Hilton

on behalf of the LHCb Collaboration

martha.hilton@cern.ch


LHCP Conference 2019



CP Violation

- CP violation discovered in charm in 2019 at LHCb
- CPV in charm is predicted to be small in the Standard Model $(\sim 10^{-4}-10^{-3})$
- Theoretical prediction has large uncertainties due to strong interactions
- CPV searches in charm complementary to those in kaons and B mesons

D^0 Mixing

Mass Eigenstates:

$$\left| D_{1,2}
ight
angle =
ho \left| D^0
ight
angle \pm q \left| ar{D}^0
ight
angle$$

Mixing parameters:

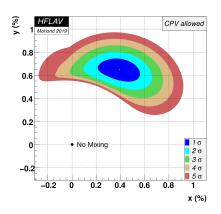
$$x\equiv\frac{(m_1-m_2)}{\Gamma}$$

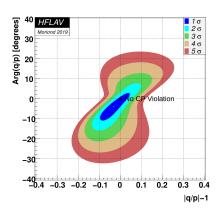
$$y\equiv rac{(\Gamma_1-\Gamma_2)}{2\Gamma}$$

Types of CP Violation

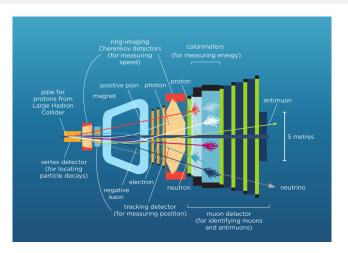
Direct CP Violation:

$$\Gamma(D^0 o f)
eq \Gamma(\bar{D^0} o \bar{f})$$
 $|A_f|
eq |\bar{A}_{\bar{f}}|$


CP Violation in Mixing:


$$egin{aligned} \Gamma(D^0
ightarrow ar{D^0})
eq \Gamma(ar{D^0}
ightarrow D^0) \ |q|
eq |p| \end{aligned}$$

CP Violation in the interference between mixing and decay:


$$egin{aligned} \Gamma(D^0
ightarrow ar{D^0}
ightarrow f,t)
eq \Gamma(ar{D^0}
ightarrow D^0
ightarrow f,t) \ \phi = arg\left(rac{qar{A_f}}{pA_f}
ight)
eq 0 \end{aligned}$$

Current World Averages

LHCb Detector

LHCb detector performance: Int. J. Mod. Phys. A 30 (2015) 1530022 The LHCb detector at the LHC: JINST 3 (2008) S08005

Observation of CP Violation in Charm Decays

ΔA_{CP} : Time-integrated CP Asymmetry

CP asymmetry:

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D^0} \to f)}$$

where $f = K^-K^+$ and $f = \pi^-\pi^+$

Raw asymmetry:

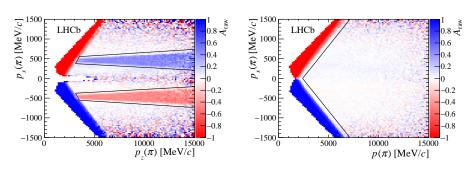
$$A_{raw}(f) = \frac{N(D^0 \to f) - N(D^0 \to f)}{N(D^0 \to f) + N(\bar{D^0} \to f)}$$

where N is the number of reconstructed signal decays

$$A_{raw} = A_{CP}(f) + A_D(\pi_s^+) + A_P(D^{*+})$$

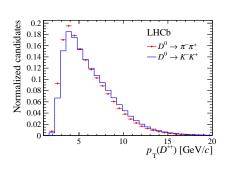
$$\Delta A_{CP}$$

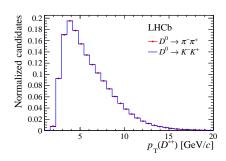
$$\Delta A_{CP} \equiv A_{CP}(D^0
ightarrow K^-K^+) - A_{CP}(D^0
ightarrow \pi^-\pi^+)$$

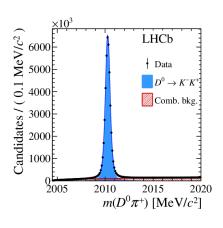

The initial flavour of the neutral D meson is tagged by the charge of the slow pion from $D^{*\pm} \to D^0 \pi^+$ decays or the muon from semi-leptonic B decays: $B \to D^0 \mu^- X$.

$$oldsymbol{\Delta} \mathcal{A}_{CP} = \left[a_{CP}^{dir} (\mathcal{K}^+ \mathcal{K}^-) - a_{CP}^{dir} (\pi^+ \pi^-)
ight] + rac{oldsymbol{\Delta} \left\langle t
ight
angle}{ au} a_{CP}^{ind}$$

where $\Delta \left< t \right>$ is the difference in proper time between $D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$

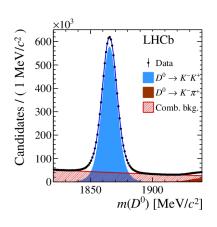

Fiducial Selection

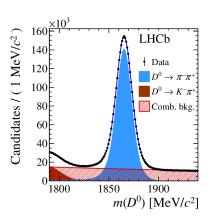

 For some regions in phase space, the soft pion is kicked out of the detector acceptance by the magnetic field


Kinematic Reweighting

• The K^+K^- sample is corrected to match the $\pi^+\pi^-$ sample by a reweighting procedure

Measurement of A_{raw} : π -tagged





 $D^0 \rightarrow K^+ K^-$ yield: **44M**

$$D^0 \to \pi^+\pi^-$$
 yield: **14M**

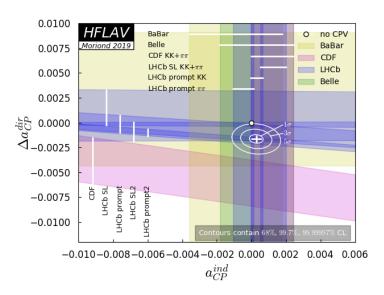
Measurement of A_{raw} : μ -tagged

 $D^0 \rightarrow K^+ K^-$ yield: **9M**

 $D^0
ightarrow \pi^+\pi^-$ yield: **3M**

ΔA_{CP} : Results

Run 2:


$$\Delta A_{CP}^{Prompt} = [-18.2 \pm 3.2(stat.) \pm 0.9(syst.)] \times 10^{-4}$$

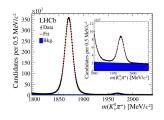
 $\Delta A_{CP}^{SL} = [-9 \pm 8(stat.) \pm 5(syst.)] \times 10^{-4}$

Combination with Run 1:

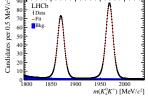
$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

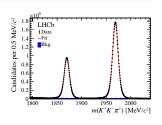
CP violation observed in charm decays at 5.3σ

World Average



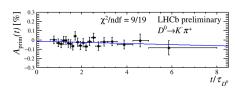
Search for CP violation in $D_s^+ \to K_s^0 \pi^+$, $D^+ \to K_s^0 K^+$ and $D^+ \to \phi \pi^+$ decays

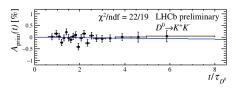

arXiv:1903.01150

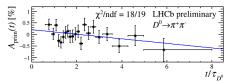

Results:

$$\mathcal{A}_{CP}(D_s^+ o K_s^0 \pi^+) = (1.3 \pm 1.9 \pm 0.5) imes 10^{-3}$$
 $\mathcal{A}_{CP}(D^+ o K_s^0 K^+) = (-0.09 \pm 0.65 \pm 0.48) imes 10^{-3}$ $\mathcal{A}_{CP}(D^+ o \phi \pi^+) = (0.05 \pm 0.42 \pm 0.29) imes 10^{-3}$

 $D_s^+ \to K_s^0 \pi^+$



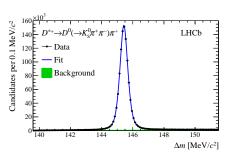



15 / 23

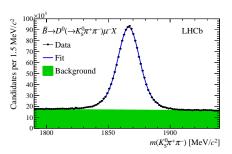
 $D^+ \rightarrow \phi \pi^+$

Search for time-dependent CP violation in $D^0 \to K^+K^$ and $D^0 \to \pi^+\pi^-$ decays

$$A_{CP}(f) = A_{CP}^{decay}(f) - A_{\Gamma}(f) rac{\langle t
angle_f}{ au_{D^0}}$$


$$A_{\Gamma}(K^{+}K^{-}) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4}$$

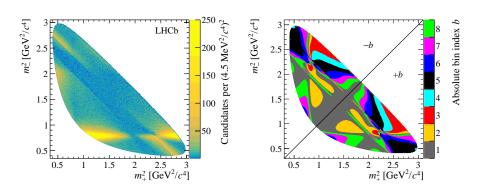
 $A_{\Gamma}(\pi^{+}\pi^{-}) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$


LHCb-CONF-2019-001

Measurement of the mass difference between neutral charm eigenstates

Mixing in $D^0 o K_s^0 \pi^+ \pi^-$

- $D^0 o K_s^0 \pi^+ \pi^-$ has rich resonance structure
- Good sensitivity due to varying strong-phase differences
- Model-independent approach (bin-flip method) avoids modelling efficiency and dynamics of D^0 decay


Prompt yield: 1.3M

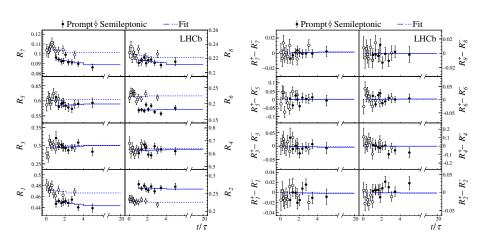
Semi-leptonic yield: 1M

Run 1 data: $\sim 3 {\rm fb}^{-1}$, arXiv:1903.03074

Bin-flip Method

- Data is binned in Dalitz coordinates where the binning scheme is chose to have approximately constant strong-phase differences
- Measure the yield ratio R_{bi}^{\pm} between -b and b in bins of decay time

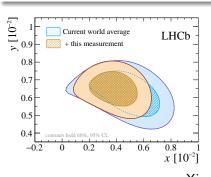
Phys. Rev. D99 (2019) 012007, arXiv:1811.01032l

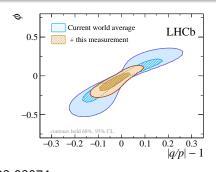

Bin-flip Method

For small mixing parameters and no CP Violation:

$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4}r_b \left\langle t^2 \right\rangle_j Re(z_{cp}^2 - \Delta z^2) + \frac{1}{4} \left\langle t^2 \right\rangle_j |z_{cp} \pm \Delta z|^2 + \sqrt{r_b} \left\langle t \right\rangle_j Re[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \left\langle t^2 \right\rangle_j Re(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \left\langle t^2 \right\rangle_j |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \left\langle t \right\rangle_j Re[X_b(z_{CP} \pm \Delta z)]}$$

- $\langle t \rangle_i$: Average decay time of unmixed decays in bin j
- r_b : Ratio of signal yields in symmetric Dalitz bins $\pm b$ at t=0
- X_b : Average strong phase difference in each bin
- z_{CP} and Δz : Obtained from a fit to R_{bi}^{\pm} ratios in decay time


Fit Results



arXiv:1903.03074

Results and impact on current world average

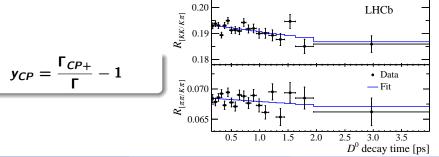
$$y_{CP} = [0.74 \pm 0.36(stat.) \pm 0.11(syst.)]\%$$

 $\Delta y = [-0.06 \pm 0.16(stat.) \pm 0.03(syst.)]\%$
 $x_{CP} = [0.27 \pm 0.16(stat.) \pm 0.04(syst.)]\%$
 $\Delta x = [-0.053 \pm 0.070(stat.) \pm 0.022(syst.)]\%$

Summary

- Measurements of CP violation is important for testing Standard Model predictions
- This is a promising area to look for new physics
- \bullet CP violation observed for the first time at LHCb with a significance of 5.3σ
- Several measurements still to be updated with the full Run 2 dataset

Backup Slides


Measurement of the charm-mixing parameter y_{CP}

Phys. Rev. Lett. 122 (2019) 011802, arXiv:1810.06874

• Measurement of indirect CP Violation with $D^0 o K^+K^-$, $D^0 o \pi^+\pi^-$ and $D^0 o K^-\pi^+$ decays with $\sim 3 {
m fb}^{-1}$ data

y_{CP} result:

$$y_{CP} = (0.57 \pm 0.13(stat.) \pm 0.09(syst.))\%$$

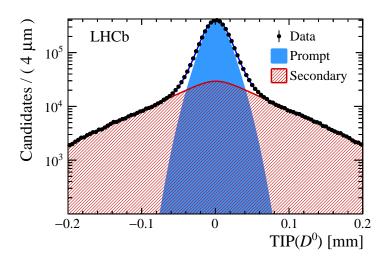
ΔA_{CP} : World Average

ΔA_{CP} : Selection

Selection

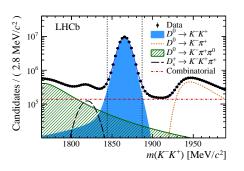
- D^0 decay vertex
- Quality and PID information of tracks
- p_T of tracks and D^0
- ullet Angle between D^0 momentum and flight direction
- $\chi^2_{I\!P}$: the difference between the χ^2 of the PV with and without the considered particle
- m_{corr} and $m(D^0\mu)$ for SL and $m(D^0)$ for Prompt
- SL sample further filtered with MVA

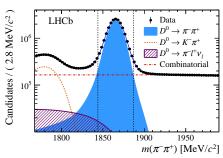
ΔA_{CP} : Semi-leptonic sample BDT input variables


BDT Input Variables:

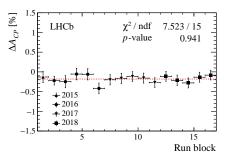
- Fit quality of D^0 and B decay vertices
- D⁰ flight distance
- D⁰ impact parameter: the minimum distance of its trajectory to the nearest primary vertex
- p_T of D^0 decay products
- Significance of the distance between the D^0 and B decay vertices
- Invariant mass $m(D^0\mu)$
- Corrected mass of B meson m_{corr}

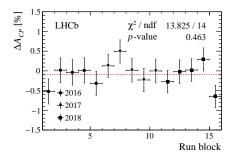
ΔA_{CP} : Systematic Uncertainties


Source	π -tagged	μ -tagged
Fit model	0.6	2
Mistag	_	4
Weighting	0.2	1
Secondary decays	0.3	_
B fractions	_	1
B reco. efficiency	_	2
Peaking background	0.5	_
Total	0.9	5


ΔA_{CP} : Secondary charm decays in π -tagged sample

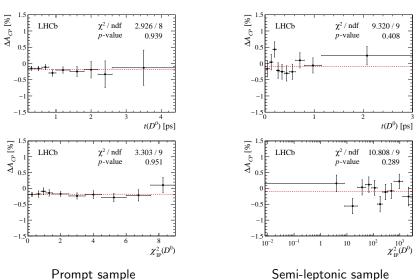
ΔA_{CP} : Peaking backgrounds


• Background components peaking in $m(D^0\pi)$ is estimated by measuring the yields of backgrounds in $m(D^0)$ distribution

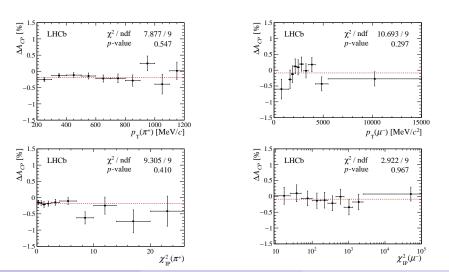


ΔA_{CP} : Crosschecks

• Measured value of ΔA_{CP} is studied as a function of several variables: data-taking period, D^0 impact parameter and decay time, π and μ impact parameter and transverse momentum

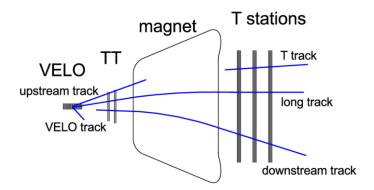


Prompt sample

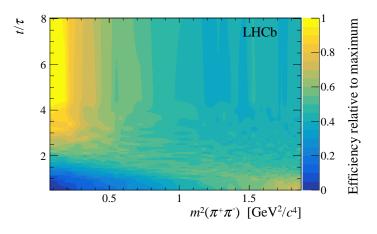


Semi-leptonic sample

Crosschecks: D^0 impact parameter and decay time



Crosschecks: π and μ impact parameter and transverse momentum



Data samples

For Prompt and Semi-leptonic samples, data is split into **LL** and **DD** K_s^0 type

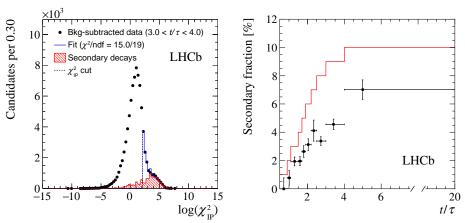
Phase Space Efficiency

Smoothed efficiency distribution: $K_s^0(DD)$ Prompt candidates

Results: Mixing and CP Violation parameters

Mixing parameters:

$$egin{aligned} x_{CP} &\equiv -\operatorname{Im}(z_{CP}) & y_{CP} &\equiv -\operatorname{Re}(z_{CP}) \ \Delta x &\equiv -\operatorname{Im}(\Delta z) & \Delta y &\equiv -\operatorname{Re}(\Delta z) \ \end{aligned}$$
 and in the limit of CP symmetry $x_{CP} = x$, $y_{CP} = y$ and $\Delta x = \Delta y = 0$


Parameter	Value	95.5% CL interval
$ \begin{array}{c c} x & [10^{-2}] \\ y & [10^{-2}] \\ q/p \\ \phi \end{array} $	$0.27^{+0.17}_{-0.15}\\0.74\pm0.37\\1.05^{+0.22}_{-0.17}\\-0.09^{+0.11}_{-0.16}$	$ \begin{bmatrix} -0.05, 0.60 \\ 0.00, 1.50 \end{bmatrix} $ $ \begin{bmatrix} 0.55, 2.15 \\ -0.73, 0.29 \end{bmatrix} $

Fit results and correlations

Parameter	Value	Stat. correlations			Syst. correlations		
	$[10^{-3}]$	y_{CP}	Δx	Δy	y_{CP}	Δx	Δy
x_{CP}	$2.7 \pm 1.6 \pm 0.4$	-0.17	0.04	-0.02	0.15	0.01	-0.02
y_{CP}	$7.4 \pm 3.6 \pm 1.1$		-0.03	0.01		-0.05	-0.03
Δx	$-0.53 \pm 0.70 \pm 0.22$			-0.13			0.14
Δy	$0.6 \pm 1.6 \pm 0.3$						

Fit results. The first contribution to the uncertainty is statistical, the second systematic.

Systematic uncertainties: Secondary contamination

(Left) Fit to distribution of $D^0 \log (\chi^2_{IP})$ for Prompt candidates. (Right) Fraction of secondary D^* decays as a function of decay time.