paolo.gandini@cern.ch



### **Recent results on heavy flavor production and spectroscopy with LHCb**



## Paolo Gandini

INFN Milan

INFN

On behalf of the LHCb Collaboration

Istituto Nazionale di Fisica Nucleare

### LHCP2019

20-25 May 2019 Puebla, Mexico

# Outline

- LHCb is an extraordinary gym for "standard" and "exotic" spectroscopy
- High cross section allows high yields of heavy hadrons
  - $10^{11} \text{ bb/year}$
  - 20x for cc/year
- Heavy flavor production and spectroscopy is a broad topic
- I will cover only a selection of very recent results by LHCb
- Nice results are now appearing using full Run1+Run2 dataset!



### **Shopping list**

- Observation of a narrow pentaquark state, Pc(4312)<sup>+</sup>, and of two-peak structure of the Pc(4450)<sup>+</sup> PAPER-2019-014 arXiv:1904.03947, now accepted by PRL
- Near-threshold  $D\overline{D}$  spectroscopy and observation of a new charmonium state PAPER-2019-005 arXiv:1903.12240
- Observation of an excited Bc<sup>+</sup> state PAPER-2019-007 arXiv:1904.00081
- A search for  $\equiv cc^{++} \rightarrow D^+pK^{-}\pi$  decays PAPER-2019-011 arXiv:1905.02421



# **Experimental history of pentaquarks**

- History so far
  - In 2015 LHCb reported the observation of 2 pentaquark candidates [PRL117(2016)082002]
  - Analysis performed with Run1 data 3fb<sup>-1</sup> using  $\Lambda_b \to J/\Psi \: p \: K$  final state
  - 26k signal candidates with 5.4% background
  - Dalitz plot analysis (6D amplitude fit) confirmed 2 new states
  - Followed by a model independent analysis to exclude reflections from  $\Lambda^*$  resonances

|                   | $P_c(4380)^+$          | $P_c(4450)^+$            |
|-------------------|------------------------|--------------------------|
| $J^P$             | 3-                     | $\frac{5}{2}^{+}$        |
| Mass $[MeV/c^2]$  | $4380	ilde{\pm}8\pm29$ | $4449.8 \pm 1.7 \pm 2.5$ |
| Width $[MeV/c^2]$ | $205\pm18\pm86$        | $39\pm5\pm19$            |
| Fit fraction [%]  | $8.4\pm0.7\pm4.2$      | $4.1\pm0.5\pm1.1$        |
| Significance      | $9\sigma$              | $12\sigma$               |





# Narrow Pc(4312)<sup>+</sup> & two-peak structure

- Update of the analysis with full Run1+Run2 dataset
- 246k signal events of nice  $\Lambda_b \rightarrow J/\Psi p K$
- That's more than 9x statistics used by previous analysis
- 6D amplitude fit (2015 model) to check consistency between Run1 and Run2
- More statistics  $\rightarrow$  finer binning
- Reveals more complicate structures in the  $J/\Psi\,p$  system
- They were not resolvable in the Run1 analysis

### Summary of findings:

- Narrow peak at 4312 MeV with a width comparable with experimental resolution (2-3 MeV)
- The structure at 4450 MeV now resolved in two narrow peaks at 4440 MeV and 4457 MeV, respectively
- All statistical significances are well above  $5\sigma$

#### PAPER-2019-014 arXiv:1904.03947



# Narrow Pc(4312)<sup>+</sup> & two-peak structure

- Amplitude analysis is challenging due to
  - size of sample
  - amplitude model
  - mass resolution
- Can reduce the contribution of  $\Lambda^*$  reflections with PT cuts on  $\Lambda^*$
- Other cross checks performed
- For narrow peaks perform 1D fit to mass



Paolo Gandini - LHCP2019

## Narrow Pc(4312)<sup>+</sup> & two-peak structure



#### PAPER-2019-014 arXiv:1904.03947

### A few considerations

- Wide  $P_{\rm c}$  does not perturbate the fit to the lower mass states
- $P_c(4312)^+$ ,  $P_c(4440)^+$  are not near triangle diagram thresholds
- $P_c(4457)^+$  close to threshold
- Data are described better by BW than triangle-diagram terms
- Narrow widths and masses close to thresholds points toward baryon-meson bound states interpretation

| $\mathcal{R}\equivrac{\mathcal{B}(\Lambda_b^0 ightarrow P_c^+K^-)\mathcal{B}(P_c^+ ightarrow J/\psi K^-)}{\mathcal{B}(\Lambda_b^0 ightarrow J/\psi pK^-)}$ |                                |                                       |           |                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------|-----------|---------------------------------|--|--|--|
| State                                                                                                                                                       | $M \;[\mathrm{MeV}\;]$         | $\Gamma \; [ { m MeV} \;]$            | (95%  CL) | $\mathcal{R}~[\%]$              |  |  |  |
| $P_c(4312)^+$                                                                                                                                               | $4311.9 \pm 0.7^{+6.8}_{-0.6}$ | $9.8 \pm 2.7^{+ 3.7}_{- 4.5}$         | (< 27)    | $0.30 \pm 0.07^{+0.34}_{-0.09}$ |  |  |  |
| $P_c(4440)^+$                                                                                                                                               | $4440.3 \pm 1.3^{+4.1}_{-4.7}$ | $20.6 \pm 4.9^{+\ 8.7}_{-10.1}$       | (< 49)    | $1.11 \pm 0.33^{+0.22}_{-0.10}$ |  |  |  |
| $P_{c}(4457)^{+}$                                                                                                                                           | $4457.3 \pm 0.6^{+4.1}_{-1.7}$ | $6.4 \pm 2.0^{+}_{-}  {}^{5.7}_{1.9}$ | (< 20)    | $0.53 \pm 0.16^{+0.15}_{-0.13}$ |  |  |  |

21st May 2019

### Paolo Gandini - LHCP2019

# New charmonium state in $D\overline{D}$

- This is the first LHCb analysis using Run<u>1</u>+Run2 data: 9fb<sup>-1</sup>
- Combined analysis of prompt  $D^+D^-$  and  $D^0\overline{D}{}^0$  combinations
- Scan wide region of Q value above threshold

### Analysis strategy

- Reduce combinatoric background exploiting D lifetime
- Tight ±20 MeV mass cuts
- D mass constrained to known values
- Fits performed in different mass regions for better paramerisation of background components
- Below: nice correlations of D mass distributions



# New charmonium state in $D\overline{D}$



- Narrow charmonium state X(3842) clearly visible in both channels
- Interpretation as the unobserved  $\Psi_3(1^3D_3)$  with  $J^{PC} = 3^{-n} \frac{1}{2^{2s+1}\ell_J}$
- Properties:  $m_{X(3842)} = 3842.71 \pm 0.16 \pm 0.12 \text{ MeV}/c^2$  $\Gamma_{X(3842)} = 2.79 \pm 0.51 \pm 0.35 \text{ MeV}$
- + First observations of prompt hadroproduction of  $\Psi(3770)$  and  $\chi_{_{\rm c2}}(3930)$

JPC

# New charmonium state in $D\overline{D}$

#### PAPER-2019-005 arXiv:1903.12240

|                 | $m_{\chi_{c2}(3930)}$ | $[\text{MeV}/c^2]$           | $\Gamma_{\chi_{\alpha}}$ | $_{2(3930)}$ [MeV] |
|-----------------|-----------------------|------------------------------|--------------------------|--------------------|
| Belle           | $3929 \pm 5$          | $\pm 2$                      | 29                       | $\pm 10 \pm 2$     |
| BaBar           | $3926.7 \pm 2.5$      | $7 \pm 1.1$                  | 21.3                     | $\pm 6.8 \pm 3.6$  |
| This analysis   | $3921.9 \pm 0.$       | $6 \pm 0.2$                  | 36.6                     | $\pm 1.9 \pm 0.9$  |
|                 |                       | $m_{oldsymbol{\psi}(\cdot)}$ | 3770)                    | $[MeV/c^2]$        |
| Shamov and Tody | vshev                 | 3779.3                       | $8 \pm$                  | 0.6                |
| PDG average     |                       | 3778.                        | $1 \pm$                  | 1.2                |
| PDG fit         |                       | 3773.                        | $13 \pm$                 | 0.35               |
| This analysis   |                       | 3778.                        | $1 \pm$                  | $0.7 \pm 0.6$      |

- The mass of  $\chi_{_{c2}}(3930)$  is  $2\sigma$  lower than current world average
- The width of  $\chi_{c2}(3930)$  is  $2\sigma$  higher than current world average
- Mass value is in the middle between mass of this state and for the X(3915)
- Question: are they two distinct cc states or only one? [PRL115(2015)0220001]

## **Observation of an excited B**<sub>c</sub><sup>+</sup> state

- Bc system is extremely interesting
- Composed by 2 heavy quarks
- Unique feature (until the discovery of the  $\Xi_{cc}$ )
- Ground state discovered by CDF in 1998
- Predictions on a very rich spectrum of excitations have been published
- Final states below BD threshold can undergo:
  - "radiative"
  - "2pion" transitions
- But... experimental challenges due to
  - low production cross-section
  - reconstruction of photon (if present)

#### PAPER-2019-007 arXiv:1904.00081



## Observation of an excited $B_{c}$ <sup>+</sup> state

- Look for  $\pi\pi$  transitions
- Main decay modes:  $B_c(2S) \rightarrow B_c \pi^+ \pi^ B_c^*(2S) \rightarrow B_c^* (\rightarrow B_c \gamma) \pi^+ \pi^-$
- Low energy photon (not reconstructed)
- Look at B<sub>c</sub>ππ spectrum

$$M(B_c^+(2S))_{\rm rec} = M(B_c^+(2S)) - M(B_c^{*+}) - M(B_c^+)$$

#### PAPER-2019-007 arXiv:1904.00081



When considering  $\Delta M$ , expect Bc<sup>\*</sup>(2S) to give peak lower than B<sub>c</sub>(2S) by 10-55 MeV

- 2014: Observed by ATLAS with Run1 data
- No discrimination between  $Bc^+(2S)$  and  $Bc^{+*}(2S)$
- Two peaks unresolved
- 2019: Observed by CMS
- Uses full Run2 data
- Two peaks well resolved



#### PRL 113 (2014) 12004



### Paolo Gandini - LHCP2019

## **Observation of an excited B\_{c}<sup>+</sup> state**

PAPER-2019-007 arXiv:1904.00081

- Run1 + Run2 data
- Requirement on  $PT(B_c) > 10 \text{ GeV}$  and  $PT(\pi) > 300 \text{ MeV}$
- $B_c^*(2S)^+$  observed with significance >  $5\sigma$
- Hint for  $Bc(2S)^{\scriptscriptstyle +}$  with global (local) significance of 2.2 (3.2)  $\sigma$



# A search for $\Xi cc^{++} \rightarrow D^+ pK^- \Pi$ decay

#### PAPER-2019-011 arXiv:1905.02421

New



- First observation of double charmed baryon triggered a lot of theoretical attention
- $\Xi cc^{++}$  was observed in  $\Xi cc^{++} \rightarrow \wedge cK^{-}\pi^{+}\pi^{+}$  and  $\Xi cc^{++} \rightarrow \Xi c^{+}\pi^{+}$
- A measurement of lifetime was also performed



- The analysis relies on:
  - Sample corresponding to integrated luminosity of 1.7fb<sup>-1</sup>
  - Very efficient trigger from the D
  - Multivariate selection

## A search for $\Xi cc^{++} \rightarrow D^+ pK^- \Pi$ decay

#### PAPER-2019-011 arXiv:1905.02421

New



- No significant signal is found in the mass range 3300-3800 MeV
- Upper limit on ratio of Bfs:  $R < 1.7 (2.1) 10^{-2} at 90\% (95\%)$

$$\mathcal{R} = \frac{\mathcal{B}(\Xi_{cc}^{++} \to D^+ p K^- \pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)}$$

## Summary

- Here, I presented only a short list of the latest results from LHCb
- The first analyses using the full Run1+Run2 dataset are now appearing
- Expect many updates in the future
- Many Dalitz analyses become feasible
- Upgrade has now started  $\rightarrow$  expect to collect more luminosity from 2021!
- You can follow our progress on our page (weekly updates and videos)!

## **Stay Tuned!**