Multijet and photon+jet measurements

Cristian Baldenegro

On behalf of the CMS Collaboration

University of Kansas

Introduction

- Quantum chromodynamics (QCD), very rich and successful theory of strong interactions!
- Precise understanding of perturbative and non-perturbative QCD necessary for:
 - extraction of strong coupling constant α_s
 - testing pQCD in large phase-space volumes
 - modelling soft QCD physics
 - constraining parton distribution functions (PDFs)
 - ▶ all of the above → better Standard Model measurements and searches for physics beyond the Standard Model

We present a summary of recent results by the CMS Collaboration on the following topics:

- Measurement of differential cross sections for inclusive isolated-photon and photon+jets production in proton-proton collisions at \sqrt{s} = 13 TeV (Eur. Phys. J. C 79 (2019) 20);
- Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at \sqrt{s} = 13 TeV (Submitted to Eur. Phys. J. C, arXiv:1902.04374);

Measurement of differential cross sections for inclusive isolated photon and photon+jets production in proton-proton collisions at $\sqrt{s} = 13$ TeV (Eur. Phys. J. C 79 (2019) 20)

Differential cross sections sensitive to the parton density functions over a wide range of parton momentum fraction x and energy scale Q^2

Selection

- Analysis based on 2.26 fb⁻¹ of data collected in p-p collisions at 13 TeV;
- Sum of p_T of particles inside a cone of radius $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} = 0.4$ around the photon is less than 5 GeV;
- At least one isolated photon with E_T > 190 GeV and |η|< 2.5;
- BDT (TMVA) to separate prompt-photons from neutral-meson decays (e.g., π⁰, η)
- For photon+jet measurement: same photon selection as above and jet satisfies p_T > 30 GeV and |y^{jet}| < 2.4

Leading contributions to prompt-photon production:

- quark-gluon Compton scattering $qg
 ightarrow q\gamma$
- quark-antiquark annihilation $qar{q}
 ightarrow g\gamma$
- parton fragmentation $q\bar{q}(gg) \rightarrow X + \gamma$

Double-differential cross-section measurement ($\gamma + X$)

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}y^{\gamma}\mathrm{d}E_T^{\gamma}} = \frac{\mathcal{U}(N^{\gamma})}{\Delta y^{\gamma}\cdot\Delta E_T^{\gamma}\cdot\epsilon\cdot\mathrm{SF}\cdot L}$$

- Comparison with NLO QCD predictions (JETPHOX)
- Total theoretical uncertainties are evaluated as the quadratic sum of the scale, PDF, and α_s
- Tested with various PDF sets

- Tested predictions w/ various PDF sets (NNPDF3.0, CT14, MMHT14, HERAPDF2.0)
- · Good compatibility between data and theo. predictions within uncertainties

Triple-differential cross-section measurement (γ + jet + X)

$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}y^{\gamma}\mathrm{d}E_{\mathcal{T}}^{\gamma}\mathrm{d}y^{\mathrm{jet}}} = \frac{\mathcal{U}(N^{\gamma})}{\Delta y^{\gamma}\cdot\Delta E_{\mathcal{T}}^{\gamma}\cdot\Delta y^{\mathrm{jet}}\cdot\epsilon\cdot\mathrm{SF}\cdot L}$$

- Comparison with NLO QCD predictions (JETPHOX)
- Total theoretical uncertainties are evaluated as the quadratic sum of the scale, PDF, and α_s
- Tested with various PDF sets

- Tested predictions w/ various PDF sets (NNPDF3.0, CT14, MMHT14, HERAPDF2.0)
- · Good compatibility between data and theo. predictions within uncertainties

Azimuthal separation in nearly back-to-back jet topologies in inclusive 2and 3-jet events in pp collisions at \sqrt{s} = 13 TeV (Submitted to Eur. Phys. J. C, arXiv:1902.04374)

Nearly back-to-back dijets as probe of resummation effects

- At leading-order in pQCD, the leading two jets are produced back-to-back in the transverse plane (Δφ₁₂ = |φ_{jet1} - φ_{jet2}| = π);
- Additional radiation generally induces azimuthal angle decorrelations and are described by higher-order corrections in pQCD;
- When the decorrelation is very small, Δφ₁₂ ≈ π, pQCD fixed-order calculations become unstable, but can be cured with resummation of soft parton emissions to all orders in α_s
- Resummation is approximated with parton shower evolution (PS) embedded in Monte Carlo event generators
- Nearly back-to-back dijet configurations highly sensitive to effects of soft initial- and final-state gluons

 $0 < \Delta \phi_{dijet} \ll \pi$

Analysis strategy

 Normalized differential cross-section in inclusive 2- and 3-jet production,

$\frac{d\sigma}{\sigma_{p_T^{\max}} d\Delta\phi_{12}}$

for nearly back-to-back dijet configurations

 Compare with various MC generators (LO and NLO matrix elements) with different leading-log parton shower algorithms

Selection

- Jets within rapidities |y| < 5;
- Leading two jets satisfy p_T > 100 GeV and |y|< 2.5
- For inclusive 3-jet measurement, $p_{T,jet3} > 30$ GeV and $|y_{jet3}| < 2.5$

Normalized inclusive 2-jet $\Delta \phi_{12}$ distributions for different p_T^{max} values. Binning in $\Delta \phi_{12}$ per 1°.

- Distributions peak steeply towards $\Delta \phi_{12} \approx 180^{\circ}$ at larger transverse momenta p_T^{max}
- Underestimation of \leq 10% by LO HERWIG++ w/ CUETHppS1 tune and PYTHIA 8 w/ tune CUETP8M1 as $\Delta\phi\approx$ 180°

- MADGRAPH+PYTHIA8 describes data better than HERWIG++ w/ CUETHppS1 tune and PYTHIA 8 w/ tune CUETP8M1
- Predictions agree better at larger transverse momenta (and for $\Delta \phi_{12} \neq 180^{\circ}$), where resummation effects are small

Inclusive 2-jet azimuthal angle correlations compared to NLO calculations (POWHEG)

- Differences of order 10%, especially at Δφ₁₂ ≠ 180°
- Predictions agree better at larger transverse momenta (and for $\Delta \phi_{12} \neq 180^{\circ}$), where resummation effects are small
- PH-3J + PYTHIA 8 provides better overall description

Normalized inclusive 3-jet $\Delta \phi_{12}$ distributions for different p_T^{max} values

- $\Delta \phi_{12}$ distribution does not peak as steeply at $\Delta \phi_{12} \approx \pi$ due to presence of third jet
- PYTHIA 8 w/ tune CUETP8M1 and HERWIG++ w/ tune CUETHppS1 predictions in good agreement with data

- PYTHIA 8 w/ tune CUETP8M1 and HERWIG++ w/ tune CUETHppS1 predictions in good agreement with data
- MADGRAPH with PYTHIA 8 parton showers overestimates the data by less than 10%
- 2- and 3-jet measurements are not simultaneously described by any of models.

Inclusive 3-jet azimuthal angle correlations compared to NLO calculations (POWHEG)

Conclusions

- The LHC keeps enlarging our access to unexplored phase space to study strong interactions;
- Probes of perturbative and non-perturbative QCD predictions include the results presented today:
 - Measurement of differential cross sections for inclusive isolated-photon and photon+jets production in proton-proton collisions at \sqrt{s} = 13 TeV (Eur. Phys. J. C 79 (2019) 20);
 - Azimuthal separation in nearly back-to-back jet topologies in inclusive 2- and 3-jet events in pp collisions at \sqrt{s} = 13 TeV (Submitted to Eur. Phys. J. C, arXiv:1902.04374);
- State-of-the art calculations and measurements are becoming a reality!
- More incoming results in the near future!