Measurements of jet fragmentation and jet substructure with ALICE

Markus Fasel (Oak Ridge National Laboratory) For the ALICE Collaboration

7th Annual Large Hadron Collider Physics Conference LHCP2019

Jet measurements at low $p_{\rm T}$ in vacuum

2

M. Dasgupta, F. Dreyer, G. Salam, G. Soyez JHEP 06 (2016) 057

Different sensitivity to various effects for different jet radii

Unique opportunity to constrain perturbative and non-perturbative effects with ALICE

New data allows for more differential studies using jet substructure observables

Jet substructure measurements with ALICE

3

Differential cross section in pp collisions at $\sqrt{s} = 13 \text{ TeV}$

NEW

Probing jet production in a wide range from the non-perturbative to the perturbative region and in a wide range of jet radii

Cross section ratios decreasing with increasing jet radius and almost constant for $p_{\rm T}$ > 100 GeV/c

Comparison to POWHEG + PYTHIA

5

Jet production well described by POWHEG+PYTHIA8 for various jet radii in a wide p_T range

Markus Fasel (ORNL) | LHCP 2019, May 20st - 25th

Good description of the jet production by POWHEG+PYTHIA at various center-of-mass energies

lower panel includes POWHEG scale uncertainty

Differential jet cross section in pp collisions at $\sqrt{s} = 5.02 \text{ TeV}$

Grooming via the SoftDrop algorithm

Extract the hard components of a jet

- Recursively removing large-angle soft radiation
- Method:
 - Recluster jet (with Cambridge/Aachen algorithm)
 - Decluster tree
 - Remove softer branch until SoftDrop condition is fulfill

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} \left(\frac{R_g}{R_0}\right)^{\beta}$$

- Grooming controlled by z_{cut} and ${\not\!\!\!\!/}$

Expectations from theory

Related example: groomed mass

S. Marzani, L. Schunk, G. Soyez JHEP 07 (2017) 132

- z_{g} directly related to the splitting function
- *p*_T-depence:
 - ⇒Not expected (directly connected to QCD z kernel)
- *R*-dependence
 - ⇒ Different perturbative / nonperturbative effects dominate for different R

Substructure allows to isolate ingredients of the theoretical description of jet production

Instrumental response of the Z_g shape

9

pp collsions

Pb-Pb collisions

Groomed momentum fraction vs $p_{\rm T}$

10

- $p_{\rm T}$ dependence for small radii
 - Trend to larger z_g at low p_T and towards smaller z_g at high p_T
- No p_T dependence or larger jet radii
- Generators reproduce *p*_T-dependence well

R=0.5

No underlying event subtraction applied

- Grooming already removes the soft component
- No underlying event subtraction in PYTHIA as well

Groomed momentum fraction vs R

$30~{\rm GeV}/c < p_{\rm T} < 40~{\rm GeV}/c$

Low p_{T} : Shape different for small and large jet radii

- Trend towards more asymmetric splitting for larger R
- At the same $p_{\rm T}$ larger jets capture more soft large-angle radiation
- Sensitivity to non-perturbative effects / underlying event

High p_{T} : z_{g} independent of R

• Dominant part of the jet energy in core, small influence of large angle radiation

PYTHIA reproduces the trend at low $p_{\rm T}$ very well

Jet quenching in heavy-ion collisions

Particles passing through the medium created in ultra-relativistic heavy-ion collisions loose energy

 \Rightarrow Jet quenching

Effect quantified by the nuclear modification factor

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{dN^{AA}}{d\sigma^{pp}} / \frac{dp_T}{dp_T}$$

- $R_{AA} \sim 1$: No modification by the medium
- $R_{AA} < 1$: Energy loss for particles passing the hot and dense medium

13

Measurement of jet substructure sensitive to modification in the medium

Measurements of the jet substructure in

Quenching effect:

- Coherence
- Medium-induced Radiation

heavy-ion collisions

Lund maps:

- Derived from the QCD splitting function
- Powerful tool to study splitting

JHEP09(2015)170

Jet reconstruction in high-density environment

Large background in heavy-ion collisions affecting limiting jet reconstruction at low p_{T}

Using observables with low sensitivity to combinatorial background

Accounting for uncorrelated background in detector response and comparison to vacuum: Embedding and subtraction

JHEP 1810 (2018) 139

Area Sub. :G. Soyez, G. P. Salam, J. Kim, S. Dutta M. Cacciari, Phys. Rev. Lett. 110 (2013) 162001 Const. Sub.: P. Berta, M. Spousta, D. W. Miller and R. Leitner, JHEP 1406 (2014) 092

Jet grooming measurements in heavy-ion collisions

Modification of the groomed momentum fraction in central Pb-Pb collisions with respect to the vacuum

- Supression of symmetric splittings relative to the vacuum reference
- No modification of for very collimated subjets

arXiv: 1905.02512

Conclusions and outlook

- Measurement of jet substructure in a wide range of jet radii and jet $p_{\rm T}$
- No dependence of z_g on the jet p_t except in the lowest p_T -bins
- Production of jets well described by POWHEG+PYTHIA for various jet radii
- Ratios of cross sections of various jet radii in good agreement with PYTHIA+POWHEG
- Jet substructure measurements extended to heavy-ion collisions, searching for medium-induced signal

Backup

Markus Fasel (ORNL) | LHCP 2019, May 20st - 25th

Jet fragmentation measurements via dihadron correlations

18

Detector response

Track-based jets

Track-based jets: comparing to jets made of charged constituents only at particle level

Full jets: comparing to full jets at detector level

Full jets

In heavy-ion collisions response needs to include contribution from combinatorial jets