

Theory and recent developments in MC simulation of soft QCD

Patrick Kirchgaeßer (KIT)

Institute for Theoretical Physics Karlsruhe Institute of Technology

LHCP 2019

Patrick Kirchgaeßer

Introduction

Simulating pp collisions is complicated!

Introduction

The LEP environment

Hard processes + Parton Shower + Hadronization

The LHC environment

Guiding principle: Jet universality and factorization

- Tune Hadronization model to LEP data
- Add MPI
- Add Diffraction
- Add Colour Reconnection

Good overall description of MB and UE data aiming for a precision <10%

 e^+

e

Z/r

10000000000000000

Introduction

Driving force behind development: Experimental data!

General properties well described but as measurements are getting more and more differential MPMCEG reach their limit of possibilities

Strangeness enhancement

[ALICE, Nature Physics 13, 535-539 (2017)]

-> New models and ideas needed for non-flow approaches

Simulation of soft QCD - Model overview

EPOS3

Core-Corona approach

Colour Glass Condensate

CGC+Lund model

Pythia/Dipsy

Rope hadronization

String shoving

Space-time model

Herwig

Soft and diffractive scattering

Baryonic colour reconnection

Space-time model

New theory approach to CR

Connection to HI

Angantyr PISTA [K. Werner, B. Guiot, Iu. Karpenkob, T. Pierog, Nucl. Phys. A 931 (2014) 83]

[B. Schenke, S. Schlichting, P. Tribedy, R. Venugopalan Phys. Rev. Lett. 117, 162301 (2016)]

[C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, JHEP 1503, 148]

[C. Bierlich, G. Gustafson, L. Lönnblad, 1612.05132]

[S. Ferrees-Solé, T. Sjöstrand, 1808.04619]

[S. Gieseke, PK, F. Loshaj, Eur.Phys.J. C77 (2017) no.3, 156]

[S. Gieseke, PK, S. Plätzer, Eur.Phys.J. C78 (2018) no.2, 99]

[J. Bellm, C. B. Duncan, S. Gieseke, M. Myska, A. Siodmok, in preparation]

[S. Gieseke, PK, S. Plätzer, A. Siodmok, JHEP 1811 (2018) 149]

[C. Bierlich, G. Gustafson, L. Lönnblad, H. Shah, JHEP 2018,134]

[J. Bellm, C. Bierlich, 1807.01291]

This talk

EPOS 3 - The Core Corona model

[K. Werner, B. Guiot, Iu. Karpenkob, T. Pierog, Nucl. Phys. A 931 (2014) 83]

Motivation

- High mult. pp collisions similar energy density as HI collisions
- Similar behavior of pp pPb and PbPb observed
- Hydrodnamical treatment for pp justified

Initial conditions

- Gribov-Regge multiple scatterings
- CGC motivated saturation scale
- Parton ladders treated as strings

Core-Corona approach

- High pT strings escape (corona)
- High density region of stings (core)
- Hydrodynamical evolution of core

Colour Glass Condensate + Lund Strings

[B. Schenke, S. Schlichting, P. Tribedy, R. Venugopalan Phys. Rev. Lett. 117, 162301 (2016)] [B. Schenke et. al, Phys. Rev. Lett.108, 252301 (2012)]

CGC+Lund model

- Non-perturbative ansatz
- Initial conditions from IP-Glasma model
 - -> Calculate gluon distribution (pT) on an event by event basis from collision geometry
- Sample number of gluons
- Distribute gluons uniform in rapidity
- Feed gluons into Pythia
- Group gluons close in momentum into strings
- Add qqbar to guarantee colour neutrality

Strong growth of avg pT and clear mass ordering from pure initial state correlations

Pythia space-time evolution for hadronization

[S. Ferrees-Solé, T. Sjöstrand, 1808.04619]

Linear translation from energy-momentum to space-time for massless quarks

Density of hadron production high for high multiplicity pp events

Close packing becomes important ->additional motivation for collective behavior No space-time vertices for individual MPI collisions

Herwig space-time model preview

[J. Bellm, C. B. Duncan, S. Gieseke, M. Myska, A. Siodmok in preparation]

Sample MPI scattering centers from overlap function

$$A(b) = \int \mathrm{d}^2 b' G(b') G(b-b'),$$

Parton shower: propagation in transverse plane

Colour Reconnection based on space-time measure

$$R_{ij}^2 = \frac{\Delta d_{\perp ij}^2}{d_0^2} + \Delta y_{ij}^2, \qquad p_{\rm M,reco} = \exp\left(-\frac{R_{14} + R_{23}}{R_{12} + R_{34}}\right) = \exp\left(-\frac{\sum R_{\rm new}}{\sum R_{\rm old}}\right)$$

->Less parameters and CR depends on event topology

Rope Hadronization Pythia/Dipsy

[C. Bierlich, G. Gustafson, L. Lönnblad, A. Tarasov, JHEP 1503, 148]

Basic idea

- Dense environment
- Overlapping strings -> ropes
- Higher string tension
 - -> more baryons
 - -> more strangeness

Casimir scaling

QCD potential in different representations proportional to quadratic Casimir

 $\kappa_{\rm eff} \propto C_2$

String breaking

Tunneling

$$\left(-\frac{\pi m_{\perp}^2}{\kappa}\right)$$

Larger string tension

 $\mathcal{P}\propto \exp$

• More heavy hadrons

Colour Reconnection - Herwig

[S.Gieseke, C.Röhr, A.Siodmok, Eur.Phys.J. C72 (2012) 2225] [S. Gieseke, PK, S. Plätzer – EPJ C78 (2018) 99]

Algorithms

- Plain Colour Reconnection
- Statistical Colour Reconnection
- Baryonic Colour Reconnection

Plain and Stat CR based on reduction of invariant cluster mass

Important for the description of MB and UE data

Exploring strangeness enhancement Image: Comparison with strings and clusters (working title) [C. Bierlich, S. Gieseke, PK] String fragmentation Clusters

Idea

- Two adjacent breakings with ${
 m s}{
 m ar{s}}$ necessary to produce $\Phi({
 m s}{
 m ar{s}})$
- Use $\Phi(s\bar{s})$ as a trigger particle and study number of hadron species for different rapidity intervals in bins of centrality

 $\Delta y = \{0.1, 0.5, 1, \ldots\}$

• Look at correlations between different strange hadrons

Allows us to study subtle differences in the soft models between Herwig and Pythia 11

Exploring strangeness enhancement with strings and clusters (working title)

[C. Bierlich, S. Gieseke, PK]

140

Nch

140

Nch

Exploring strangeness enhancement with strings and clusters (working title)

[C. Bierlich, S. Gieseke, PK]

More plots..

Pythia-Ropes

- More baryons (overestimation of protons)
- More strangeness
- Best current description of "strange" ratios

Herwig-Baryonic CR

- Describes strangeness enhancement qualitatively
- Protons, pions and kaons on point but...
- Could be "stranger"

Conclusions

Different approaches to simulate collective effects, strangeness enhancement

I showed you

- EPOS (flow)
- **CGC+Lund** (perturbative approach)
- Pythia/Dipsy ropes (microscopic)
- Herwig Baryonic Colour Reconnection (microscopic)

Improvement in sight from different studies (Space-time models, Pythia vs. Herwig)

-> Microscopic ansätze important to study QGP from different directions

Backup

Backup

The MPI model - basics

Matter distribution

- Based on the Eikonal model
- Parameters fixed to describe $\,\sigma_{
 m tot}$

 $\mathcal{P}_{h,s} = \frac{2\chi_{\text{hard}}(b,s)^h}{h!} \frac{2\chi_{\text{soft}}(b,s)^n}{n!} e^{-2\chi_{\text{tot}}(b,s)}$ $\chi_{\text{tot}}(b,s) = \frac{1}{2} (A(b,\mu)\sigma_{\text{hard}}(s,p_{\perp}^{\min}) + A(b,\mu_{\text{soft}})\sigma_{\text{soft}})$

Extension to soft region

- Interactions above p_{\perp}^{\min} simulated as QCD 2 to 2 processes (semi-hard interactions)
- Interactions below p_{\perp}^{\min} simulated as soft gluon ladders with *multiperipheral* kinematics (soft interactions)

Different matter distribution for soft interactions

 $p_{\mathrm{T}}^{\min}(s) = p_{\mathrm{T},0}^{\min}\left(\frac{\sqrt{s}}{E_0}\right)^{b}$

Main parameters

- set /Herwig/UnderlyingEvent/MPIHandler:pTmin0 3.5
- set /Herwig/UnderlyingEvent/MPIHandler:InvRadius 1.4
- set /Herwig/UnderlyingEvent/MPIHandler:Power 0.4
- set /Herwig/Hadronization/ColourReconnector:ReconnectionProbability 0.5

New model for soft interactions

[Gieseke, Loshaj, Kirchgaesser – EPJ C77 (2017) 156]

- Multiperipheral gluon ladder
- Gluons treated non-perturbatively
- Paramaters of the model parametrized to describe 0.9, 7 and 13 TeV MB data

ATLAS [New J.Phys.13:053033,2011]

Diffraction

Inclusion of diffractive topologies

- Single and double diffraction
- Final state treated fully non-perturbatively
- Small pT but tail towards high diffractive masses
- Characterized through large rapidity gaps

Combination with UE model

- Either diffractive or MPI event
- Cross sections tuned to data
- H7->H7.1: The bump problem disappears

New versions come with improved physics capabilities!

Needed to get the correct fraction of diffractive events
set /Herwig/MatrixElements/MEMinBias:csNorm 4.5584

Set weight for Diffraction

- set MEDiffractionLeft:DiffractionAmplitude 12
- set MEDiffractionRight:DiffractionAmplitude 12
- set MEDiffractionDouble:DiffractionAmplitude 8
- set MEDiffractionDeltaLeft:DiffractionAmplitude 4
 set MEDiffractionDeltaRight:DiffractionAmplitude 4
 set MEDiffractionDeltaDouble:DiffractionAmplitude 2

Herwig 7.1.4

H7

Allow additional source of strangeness during non-perturbative gluon splitting

 $g \to s \bar{s}$

Combination with Baryonic reconnection -> improvements in more differential observables [new model in plots]

Kinematic strangeness production

- Motivation: Strangeness enhancement not well described across all MC event generators
- Different Ansätze: Flow vs. QGP vs. Modeling
- How far can one push existing models?
- Review of existing production mechanism and new mechanisms necessary

Introduce scaling s.t. probability to produce strange quarks depends on immediate environment

Parton Splitter

Mass of colour singlet

Cluster Fissioner

Inv cluster mass

Cluster Decayer

Inv cluster mass

Stages of Hadronization (+Shower)

[ALICE - Eur.Phys.J. C75 (2015) no.5, 226]

More dynamic and collective model for strange flavour production ->Herwig 7.2

Pythia with Monash tune

Since 7.0 several improvements on the soft front

- New soft model (7.1)
- Baryonic Colour Reconnection (7.1.4)
- In general good agreement with MB and UE data
- Most differential observables reasonably well described

Works out of the box

- <u>LHC-MB.in</u>
- read <u>LHC-MB.in</u>
- run LHC-MB.run -N 10000x

```
11
12 read snippets/PPCollider.in
13
Technical parameters for this run
15
  16
17 cd /Herwig/Generators
18
  ******
19 # LHC physics parameters (override defaults here)
21 set EventGenerator:EventHandler:LuminosityFunction:Energy 7000.0
22
23
24 # Minimum Bias
25 read snippets/MB.in
26
27 # Read in parameters of the soft model recommended for MB/UE simulations
28 read snippets/SoftTune.in
29
30 # Diffraction model
31 read snippets/Diffraction.in
32
33 # Read in snippet in order to use baryonic reconnection model with modified gluon splitting
   (uds)
34 # For more details see [S. Gieseke, P. Kirchgaeßer, S. Plätzer. arXiv:1710.10906]]
###
36
37 read snippets/BaryonicReconnection.in
38
```

Tuned parameters and settings for Baryonic CR

Advertisement

Monte Carlo training studentships

3-6 month fully funded studentships for current PhD students at one of the MCnet nodes. An excellent opportunity to really understand and improve the Monte Carlos you use!

Application rounds every 3 months.

MCnet projects Pythia+Vincia Herwig Sherpa MadGraph "Plugin" – Ariadne+HEJ CEDAR – Rivet+Professor +Contur+hepforge+...

