Event-shape studies in pp collisions with ALICE

Goran Simatović
for the ALICE collaboration
How can we select “hard processes”?

Many ways .. event-shape is one.

arXiv:1905.07208, submitted to EPJC
arXiv:1901.05518, submitted to JHEP
Jet-like events
- Initially a hard process (that can be modeled!)
- particle production dominated by jet hadronization
- large jet collimation contribution to particle correlations

Spherical events
- multiple soft processes, non-perturbative QCD production (harder to describe!)
- no particle correlations due to collimation
Transverse sphericity - S_T

Scalar observable, sensitive to collimation
- Easy way to pick up on jet-like shapes!

\[S^L_{xy} = \sum_i \frac{1}{p_{Ti}} \sum_i \left(\begin{array}{cc} p^2_{xi} & p_{xi}p_{yi} \\ p_{yi}p_{xi} & p^2_{yi} \end{array} \right) \]

\[S_T = \frac{2\lambda_2}{\lambda_1 + \lambda_2} \Rightarrow S_T = \begin{cases} \approx 0 & \text{Jet-like} \\ \approx 1 & \text{Spherical} \end{cases} \]

Transverse spherocity - S_0

\[S_0 = \frac{\pi^2}{4} \min_{\hat{n}} \left(\frac{\sum_i \vec{p}_{T,i} \times \hat{n}}{\sum_i p_{T,i}} \right)^2 \]

- High spherocity (≈ 1) contain jet-like cones
- High spherocity (≈ 1) contain jet-like cones
- => hard QCD process, single interaction!
- Low spherocity (≈ 0) selects soft-particle production events without jet structures

arXiv:1905.07208, submitted to EPJC
- PYTHIA doesn’t describe exactly the $<p_T>$
- EPOS better at higher N_{ch}
- both MC generators struggle to describe the low N_{ch} range of the distribution

- MC generators better describe lower spherocity spectra
- As in the case of jet-like events, low N_{ch} events are not well described by MC
- Crossing point moving with mass and appears at higher p_T for heavier particles
- Spherocity selection intuitively consistent among different particle species
How to apply event-shape selection in particle correlations analyses?

Two-particle correlations, femtoscopy
Bread and butter of femtoscopy

Using quantum statistics we can determine emission source size by measuring relative momenta of identical particles (π, K, p, ..)

Important information extracted from radii dependence on

\[k_T = \frac{1}{2} |p_{T1} + p_{T2}| \]

Non-femtoscopic background from jet-collimation significantly limits the accessible range of \(k_T \)

What does femtoscopy look like with S_T selection?
Correlation functions

- S_T event selection, selecting for hardness, allows visualization of the dominating contributions to two-particle correlations.
- Spherical events do not show signs of background correlations while jet-like event correlation functions are dominated by them.
- Due to statistical separability the event-shape induced correlations are removable from measured CFs.

\[\langle dN_{ch}/d\eta \rangle = 13.9 \pm 2.2 \]
\[S_T < 0.3 \]
\[\pi^+\pi^+ + \pi^-\pi^- \]

\[\langle dN_{ch}/d\eta \rangle = 14.9 \pm 2.3 \]
\[S_T > 0.7 \]
- observation of an ordering effect in pp
- previously reported by CMS and ALICE
 - Phys.Rev.Lett.105:032001,
 - Phys. Rev. C 89 024911
- signs of Lorentz-like source shape
- open question of CF shape interpretation
Final results

- Multiplicity scales with the volume
- Spherical events show a diminished dependence to k_T
- Jet-like events slope similar to min. bias events
- A new field of investigation opened in correlation studies!
Understanding event selection, going beyond min. bias, is a needed step in our field.

Event-shape techniques provide a reasonable way to select hard processes.

Spherical events have softer spectra and their radii are independent of pair k_T.

Jet-like events have higher p_T and the radii show similar dependence to k_T as min.bias.

Overlap with theory will significantly boost the reach of the method.
“There are more things in proton and proton, Than are dreamt of in our papers.”

Summa summarum
Back up
MonteCarlo background

- MonteCarlo generated correlations agree with measurement in a wide range of Q_{inv}
- Jet-like events are dominated by particle collimation contributions to correlation
- Non-femtoscopic background has a structure, which can not be described by a simple Gaussian form

Arxiv: 1901.05518