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Introduction

• Quantum Chromodynamics 
describes the dynamics of the 
strong interaction


• Group structure SU(3) leads to 
asymptotically free coupling αS 
at high energy/short distance


• (lattice) QCD predicts phase 
transition where quarks are no 
longer confined within hadrons


• Relativistic heavy-ion collisions 
offer a way to explore the phase 
diagram of nuclear matter and to 
study the state of matter where 
quarks exist ‘free’, known as the 
Quark Gluon Plasma (QGP)
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Heavy ion collisions at the LHC

• ALICE is the experiment at the LHC designed and optimised to study heavy-
ion collisions


• Designed to withstand huge particle multiplicities (up to 10,000 
tracks per event)


• High-precision tracking over wide momentum range (down to very low 
track momentum


• Excellent particle identification capabilities
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heavy ion running: 4 physics weeks/year 

p+p at √s=7 -> 14 TeV 
Pb+Pb at √sNN=2.76 -> 5.02 TeV



Heavy ion collisions
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We can study all stages of the system’s evolution



Heavy-flavour production at ALICE
Pb-Pb 

collisions
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Heavy quarks (c,b)  
• Short formation time 
• mc,b >> ΛQCD  

• Production described by pQCD down to pt=0 - ‘calibrated’ probe of 
the system 

• Produced in the early stages of the collision and see full space-time 
evolution of collision system



Heavy-flavour production at ALICE
Pb-Pb 

collisions

p-Pb 
collisions Smaller collision system helps disentangle hot/cold nuclear 

matter effects 
• Modification of the PDFs in nuclei 
• Final-state effects 

• Collectivity? Energy loss?
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Heavy-flavour production at ALICE
Pb-Pb 

collisions

p-Pb 
collisions

pp 
collisions

pp collisions 
• Reference for p-Pb/Pb-Pb measurements 
• Test of pQCD predictions/ production mechanisms 
• Test of fragmentation, hadronisation 
• Role of multi-parton interactions (MPIs)
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Heavy-flavour production at ALICE
Pb-Pb 

collisions

p-Pb 
collisions

pp 
collisions

pp collisions 
• Reference for p-Pb/Pb-Pb measurements 
• Test of pQCD predictions/ production mechanisms 
• Test of fragmentation, hadronisation 
• Role of multi-parton interactions (MPIs)

Smaller collision system helps disentangle hot/cold nuclear 
matter effects 
• Modification of the PDFs in nuclei 
• Final-state effects 

• Collectivity? Energy loss?

We ‘see’ heavy-flavour quarks as hadrons (bound quarks) - either mesons (Qq) or baryons (Qqq) 

What can we learn from the measurement of heavy-flavour baryons measured 
at the ALICE experiment?
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Heavy quarks (c,b)  
• Short formation time 
• mc,b >> ΛQCD  

• Production described by pQCD down to pt=0 - ‘calibrated’ probe of 
the system 

• Produced in the early stages of the collision and see full space-time 
evolution of collision system



Heavy flavour hadron production in pp collisions

• Inclusive heavy-flavour hadron production can be calculated in QCD 
using the factorisation theory:

d�hard
AB!h = fb/B(x1, Q

2)⌦ fa/A(x2, Q
2)⌦ d�hard

ab!c(x1, x2, Q
2)⌦Dc!h(z,Q

2)
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• Inclusive heavy-flavour hadron production can be calculated in QCD 
using the factorisation theory:

d�hard
AB!h = fb/B(x1, Q

2)⌦ fa/A(x2, Q
2)⌦ d�hard

ab!c(x1, x2, Q
2)⌦Dc!h(z,Q

2)

• Production cross section of parton c in parton-parton 
collision can be calculated with perturbative techniques 
for Q2 >> ~200 MeV/c


• Different theoretical schemes have been developed to 
calculate dσ:


• General-Mass Variable-Flavour Number Scheme 
(GM-VFNS)


• Matches massive (high pT) and massless (low pT) 
perturbative QCD calculations at NLO


• Fixed Order Next-to-Leading Logarithm (FONLL)


• Schemes describes D-meson + B-meson production 
cross section over wide pT range
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Heavy flavour hadron production in pp collisions



• Inclusive heavy-flavour hadron production can be calculated in QCD 
using the factorisation theory:

d�hard
AB!h = fb/B(x1, Q

2)⌦ fa/A(x2, Q
2)⌦ d�hard

ab!c(x1, x2, Q
2)⌦Dc!h(z,Q

2)

• The parton distribution function (PDF) 
fa/A(x, Q2), parametrises the non- 
perturbative dynamics of the proton.


•  Represents the probability of finding a 
parton of flavour a with a momentum 
fraction x = pparton/pproton of the proton 
A, at a given momentum transfer Q2  

•Measured in deep inelastic scattering 
and evolved to different scales using 
pQCD (DGLAP equations), well 
under control at LHC
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Heavy flavour hadron production in pp collisions



• Inclusive heavy-flavour hadron production can be calculated in QCD 
using the factorisation theory:

d�hard
AB!h = fb/B(x1, Q

2)⌦ fa/A(x2, Q
2)⌦ d�hard

ab!c(x1, x2, Q
2)⌦Dc!h(z,Q

2)

Peterson fragmentation 
parameterisation
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• The fragmentation function (FF) describes 
the probability that the outgoing parton 
fragments into a hadron h with fractional 
momentum z of the initial parton


• Measured at e+e- / ep colliders


• MC generators - Lund string fragmentation 
model


• Fragmentation fraction (percentage of 
quarks hadronising to given hadron) 
generally assumed to be universal (i.e. 
independent of collision energy/system)

Heavy flavour hadron production in pp collisions
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2)⌦ d�hard

ab!c(x1, x2, Q
2)⌦Dc!h(z,Q
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• The fragmentation function (FF) describes 
the probability that the outgoing parton 
fragments into a hadron h with fractional 
momentum z of the initial parton


• Measured at e+e- / ep colliders


• MC generators - Lund string fragmentation 
model


• Fragmentation fraction (percentage of 
quarks hadronising to given hadron) 
generally assumed to be universal (i.e. 
independent of collision energy/system)

Peterson fragmentation 
parameterisation

Is this assumption necessarily valid?
14

Heavy flavour hadron production in pp collisions



Charm fragmentation

• Combination of charm decays (D mesons, ΛC baryon) supports hypothesis that 
charm fragmentation is independent of production process 

• However, note only 1 measurement in pp collisions at LHCb  (will come back to this)
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Beauty fragmentation
• From PDG review ‘production and decay of b-flavoured hadrons’ [1]

[1] http://pdg.lbl.gov/2015/reviews/rpp2015-rev-b-meson-prod-decay.pdf

B-baryon fragmentation in ppbar 
collisions over 2x that in e+e- at Z 

resonance (though uncertainties large)
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Beauty fragmentation
• From PDG review ‘production and decay of b-flavoured hadrons’ [1]

[1] http://pdg.lbl.gov/2015/reviews/rpp2015-rev-b-meson-prod-decay.pdf

[2] Phys. Rev. D85 , 032008 (2012)

pT dependence for fΛb / (fu + fd) [2] 
( fq≡B(b→Bq) )
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Heavy flavour hadron production in p-Pb collisions

• p-Pb collisions traditionally used to separate ‘hot’ effects in 
Pb-Pb collisions (effects due to deconfined QGP) from ‘cold 
nuclear matter effects’ (effects due to the presence of a nuclei)


• One effect of the presence of a nucleus - modification to the 
parton distribution function in the nucleus fiN :

fN
i (xi, Q

2) = RN
i (xi, Q

2)fi(xi, Q
2)

18
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Charm production in p-Pb collisions
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multiplicity dependence of 
D-meson yield? Some 
effects in p-Pb collisions to 
be understood

Is baryon production modified in p-Pb collisions? 

RpPb(pT ) =
1
A
dσ pPb / dpT
dσ pp / dpT

central/peripheral yield
 JHEP 1603 (2016) 081 ALICE-PUBLIC-2017-008



• Heavy flavour production in AA collisions is a sensitive probe of:


• In-medium energy loss of heavy quarks - transport properties of the Quark 
Gluon Plasma


• Heavy quark participation in the collective expansion of the system


• Hadronisation mechanisms - fragmentation vs coalescence

20

Flavour-dependent in-
medium energy loss Hadronisation via 

coalescence

Heavy flavour hadron production in AA collisions



A couple of highlights from AA collisions
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of high-pT partons

Azimuthal anisotropy of light and charmed 
hadrons, indicates light and heavy quarks 

participate in collective expansion of the system
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Theoretical constraints to heavy-

quark transport coefficients

v2 = cos 2(ϕ −Ψ2 )[ ]

d2N
dϕdpT

=
dN
2πdpT

1+ 2 vn(pT )cosn(ϕ −Ψn)
n=1

∞

∑
⎡

⎣
⎢

⎤

⎦
⎥

—>
RAA(pT ) =

dNAA / dpT
TAA dσ pp / dpT

Phys. Rev. Lett. 111 (2013) 102301

 JHEP 1603 (2016) 081

arxiv:1704.07800



Baryon-to-meson ratio
• Baryon-to-meson ratios gives a simple way to compare the fraction of 

charm quarks hadronising to baryons or mesons, and their dependence on 
pT


• Measured in the light-flavour sector by ALICE, usually to compare to Pb-Pb


• Proton/pion and Λ/K0s ratios enhanced in Pb-Pb collisions

Coalescence? flow? Interplay between both effects?

Baryon/meson ratios p/pi, L/K0s in Pb-Pb

22



Baryon-to-meson ratio

Enhancement also seen in smaller systems
23

• Baryon-to-meson ratios gives a simple way to compare the fraction of 
charm quarks hadronising to baryons or mesons, and their dependence on 
pT


• Measured in the light-flavour sector by ALICE, usually to compare to Pb-Pb


• Proton/pion and Λ/K0s ratios enhanced in Pb-Pb collisions



Charmed baryon-to-meson ratio in Pb-Pb collisions

• The baryon-to-meson ratio in the 
charm sector in Pb-Pb collisions aims to 
test: 
• Hadronisation via coalescence [1,2]

• Large enhancement expected in 

coalescence plays a role

• Diquarks in medium? [3]

• Binary, coloured bound states qq, 

qg, gg may exist in medium

• Coalescence between c quark 

and ud light quark bound state 
would create further 
enhancement in the ΛC/D0 ratio


• Measurements in pp and p-Pb collisions 
also provide an essential reference for 
charmed baryon measurements in Pb-Pb 
collisions

[1] S. H. Lee et al., Phys.Rev.Lett. 100 (2008) 222301 
[2] Oh, Yongseok et al. Phys.Rev. C79 (2009) 044905 
[3] L. Zhou, arXiv:1704.04364
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Charmed baryon production 
measurements at ALICE
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ALICE apparatus and datasets
Inner Tracking System (ITS) 

Time Projection Chamber (TPC) 
Time Of Flight detector (TOF): 

Tracking, PID 
|η| < 0.9

Data samples : 
pp collisions: 
• √s = 7 TeV : ~370x106 min. bias events, Lint = 6.0 nb-1 

p-Pb collisions 
• √s = 5.02 TeV : ~100x106 min. bias events, Lint = 48.6 µb-1

V0, ZDC 
Trigger and event 
centrality

26



Charmed baryon production measurements

Charmed baryon pT-differential cross section is calculated as:

d2�⇤+
c

dpTdy
=

1

2c�y�pT

1

BR

fprompt ·N⇤c

|y|<yfid

(A⇥ ✏)prompt

1

Lint
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Raw yield - number of 
reconstructed signalRaw yield fraction determined 

to be prompt

Acceptance, efficiency 
corrections

Integrated 
luminosity

Branching fraction of ΛC 
decay 

pT, rapidity window of 
measurement

ΛC+ —> pKπ+                             BR ~ 6.35% 
ΛC+ —> pK0S BR ~ 1.58%          
ΛC

+ —> e+Λνe BR ~ 3.6% 
ΞC

0  —> e+Ξ-νe BR unknown

M = 2.2684 GeV/c2, cτ ~ 60μmΛC+

M = 2.47199 GeV/c2, cτ ~ 34μmΞC0



ΛC hadronic decay reconstruction

28

• PID using TPC via dE/dx and 
TOF via time of flight 
measurement


• nσ cuts, or Bayesian 
approach to identify particles 

• Cuts on decay topologies 
exploiting decay vertex 
displacement from primary vertex


• Signal extraction via invariant 
mass distribution 


• Feed-down (b) subtracted 
using pQCD-based estimation of 
charmed baryon production

P (Hi|~S) =
P (~S|Hi)C(Hi)P

k=e,µ,⇡,... P (~S|Hk)C(Hk)



ΛC hadronic decay reconstruction
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• PID using TPC via dE/dx and 
TOF via time of flight 
measurement


• nσ cuts, or Bayesian 
approach to identify particles 

• Cuts on decay topologies 
exploiting decay vertex 
displacement from primary vertex


• Signal extraction via invariant 
mass distribution 


• Feed-down (b) subtracted 
using pQCD-based estimation of 
charmed baryon production



ΛC hadronic decay reconstruction
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• PID using TPC via dE/dx and 
TOF via time of flight 
measurement


• nσ cuts, or Bayesian 
approach to identify particles 

• Cuts on decay topologies 
exploiting decay vertex 
displacement from primary vertex


• Signal extraction via invariant 
mass distribution 


• Feed-down (b) subtracted 
using pQCD-based estimation of 
charmed baryon production

• Correct for efficiency + 
normalisation
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• PID using TPC via dE/dx and TOF via time 
of flight measurement 

• Wrong-sign e-Λ (e-Ξ-) pairs subtracted from 
right-sign spectra e+Λ (e+Ξ-)


• Correct for:

• Λb0 (Ξb0) contribution in wrong-sign 

spectra

• Ξc0,+ contribution in right-sign spectra 

for  ΛC measurement

• Unfold e+Λ pT spectra to obtain ΛC+ spectra

ΛC ,ΞC0 semileptonic decay reconstruction



ΛC ,ΞC0 semileptonic decay reconstruction
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• PID using TPC via dE/dx and TOF via time 
of flight measurement 

• Wrong-sign e-Λ (e-Ξ-) pairs subtracted from 
right-sign spectra e+Λ (e+Ξ-)


• Correct for:

• Λb0 (Ξb0) contribution in wrong-sign 

spectra

• Ξc0,+ contribution in right-sign spectra 

for  ΛC measurement

• Unfold e+Λ pT spectra to obtain ΛC+ spectra



• PID using TPC via dE/dx and TOF via time 
of flight measurement 

• Wrong-sign e-Λ (e-Ξ-) pairs subtracted from 
right-sign spectra e+Λ (e+Ξ-)


• Correct for:

• Λb0 (Ξb0) contribution in wrong-sign 

spectra

• Ξc0,+ contribution in right-sign spectra 

for  ΛC measurement

• Unfold e+Λ pT spectra to obtain ΛC+ spectra
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Applying machine learning
• ΛC signal extraction difficult at present


• Large combinatorial background 

• Short ΛC lifetime (cτ = 60 μm) means secondary vertex reconstruction is at the 
limit of the current ITS detector resolution


• Rectangular selection on properties of the Lc decay may not be optimal


• Can we do better? Answer - yes! 

• Multivariate algorithms offer a way to combine properties of a physics signal to 
optimise the rejection of background


• I will briefly show work I have done exploring this in the ΛC+ —> pKπ+ decay channel
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Boosted Decision Trees (BDTs)
• Decision trees employ sequential cuts to 

perform classification, trained on sample of 
known ‘signal’ and ‘background’ makeup 

• ‘Variable’ space split into partitions, and 
mapped onto one-dimensional classifier 

• Selection on classifier corresponds to 
decision boundary in feature space 

• Boosted decision trees: create many small 
trees, and combine - reduce misbehaviour 
due to fluctuations 

✓Can often perform more optimally than 
‘standard’ rectangular cuts 

✓Deals with lots of input data very well – 
automatic selection of strongly discriminating 
features  

✓‘Algorithm-of-choice’ for many other 
collaborations 

• Top quark mass[1], Higgs discovery[2],    
Bs0—>µµ[3] …

35

[1] Phys. Rev. D.58,052001 (1998)

[2] Phys. Lett. B 716 (2012) 30

[3] Nature 522, 68-72 (04 June 2015)

https://doi.org/10.1146/annurev.nucl.012809.104427

https://doi.org/10.1146/annurev.nucl.012809.104427


BDT analysis

BDT response
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…BDT magic…

• BDT trained on simulated signal sample, data background sample, then applied on data


• Input variables include kinematic (pT decay products) topological (decay length, quality of 
reconstructed vertex, cosine pointing angle…) and PID (Bayesian PID track probabilities) 
variables associated with the ΛC decay - verified to describe the data well 

• BDT response shows clear separation between signal and background


• Clear improvement in background rejection/signal efficiency with respect to rectangular 
cut method



BDT analysis
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Background reduced, 
signal increased

signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ba
ck

gr
ou

nd
 re

je
ct

io
n

0.5

0.6

0.7

0.8

0.9

1

 < 8 GeV/c
T
p6 < 

Multiple variable ROC curve

Rectangular cuts
BDT

• BDT trained on simulated signal sample, data background sample, then applied on data


• Input variables include kinematic (pT decay products) topological (decay length, quality of 
reconstructed vertex, cosine pointing angle…) and PID (Bayesian PID track probabilities) 
variables associated with the ΛC decay - verified to describe the data well 

• BDT response shows clear separation between signal and background


• Clear improvement in background rejection/signal efficiency with respect to rectangular 
cut method

My thesis



BDT analysis

• BDT analysis shows good agreement with standard analysis

• Smaller uncertainties


• pT reach extended in pp collisions


• p-Pb analysis merged with other analyses for paper in preparation - pp analysis serves as a useful 
cross-check
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Results
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ΛC+ pT-differential cross section

• Good agreement between different decay channels + different analysis methods


• Largest discrepancy = 1.7σ (stat.+syst. uncertainties)

40

arxiv:1711.02393



ΛC+ pT-differential cross section

GM-VFNS: Eur. Phys. J. C41 (2005) 199–212, Eur. Phys. J. C72 (2012) 2082 
POWHEG: JHEP 06 (2010) 043 

Different decay 
channels merged 
taking into account 
correlation of 
statistical and 
systematic 
uncertainties

• ΛC
+ pT-differential cross section significantly underestimated by theory in pp and p-Pb 

collisions 
• x2-3 higher than GM-VFNS in pp collisions  
• Up to x20 higher than POWHEG+PYTHIA6 in pp and p-Pb collisions 

• NOTE: fragmentation parameters calculated from e+e- collision data
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ΛC+ /D0 baryon-to-meson ratio
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(2011) 103 , HERWIG: Eur. Phys. J. C58 (2008) 639–707

• ΛC
+
 /D0 in pp and p-Pb collisions compatible within uncertainties 

• ΛC
+
 /D0 ratio higher than expectation from MC  

• Colour reconnection mode in PYTHIA 8 closer to data
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ΛC+ RpPb
RpPb(pT ) =

1
A
dσ pPb / dpT
dσ pp / dpT

• ΛC+ RpPb consistent with unity, with D RpPb and with models assuming cold nuclear 
matter effects, or ‘hot’ medium effects

– POWHEG + PYTHIA with CT10NLO+EPS09 PDF - parameterisation of nuclear PDF 
– POWLANG – ‘small-size’ QGP formation, collisional energy loss only
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ΞC0 production
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First measurement of ΞC0 
production at the LHC

[1] Phys. Rev. D40 (1989) 2955, Phys. Rev. D43 (1991) 2939, Phys. Rev. D53 (1996) 1457  

 PYTHIA 8 Monash: P. Skands, S. Carrazza, and J. Rojo, Eur. Phys. J. C74 (2014) 3024  
 Colour reconnection: J. R. Christiansen and P. Z. Skands JHEP 08 (2015) 003  

• Baryon-to-meson ratio ΞC0 —> e+Ξ-νe 
/ D0  also significantly larger than 
predictions  

• BR not measured – range (0.3% - 
3.2%) estimated from theory [1]

arxiv:1712.04242



Colour reconnection
• Some models predict higher yield of baryons - what are 

they doing?

45

• pp collisions - hadronisation models (based on Lund string model 
[1]) modify baryon production:  
–Colour reconnection [2]

–Rope hadronisation [3]


• Models qualitatively reproduce baryon-to-meson ratios in light sector 

[ C. Bierlich, J. Christiansen Phys. Rev. D 92, 094010 (2015) ]

Quarks produced 
independently

Connection 
between 
independent quarks

‘Junction’ topologies 
allowed

—> baryon junctions

[1] Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 7 (1997) 1–471 
[2] J. Christiansen, P. Skands, JHEP 08 (2015) 003  
[3] T. Biro et. al, Nucl. Phys. B 245 (1984) 449-468  
 



Strings in the light sector

• ‘String’ dynamics included in 
models which qualitatively 
reproduce multi-strange yield as 
function of multiplicity (rope 
hadronisation in DIPSY)


• One of the most surprising/
interesting results from ALICE so 
far - Collectivity/strangeness 
enhancement in lighter systems?

46

Nature Physics 13, 535–539 (2017)




Some more recent charmed baryon measurements

• First measurement of the ΛC baryon in AA 
collisions at √sNN = 200 MeV presented by 
STAR at Quark Matter 2015


• Clear indication of a large ΛC/D0 

• In agreement with models including 
hadronisation via coalescence


• However… 


• reference measurement crucial for 
interpretation of the data


• Models use theoretical pp baseline - 
known to underpredict ΛC/D0 in pp 
collisions


• STAR plan to measure ΛC/D0 in 
peripheral collisions (RCP)

47

arXiv:1704.04364



• LHCb presented measurement 
of ΛC/D0 in p-Pb collisions at 
√sNN = 5.02 TeV


• Within 1-2σ of ALICE points 
(different rapidity regions)
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LHCb-CONF-2017-005

Some more recent charmed baryon measurements



Run 3-4 at the LHC (2021 onwards)
• Completely new Inner Tracking System 


• 7 layer silicon pixel detector


• Closer to interaction point 39mm —> 22mm


• Reduced material budget —>X/X0 ~1.14% —> 
0.3%


• Reduced pixel size 50μm x 425μm —> 30μm x 
30μm


• Continuous TPC readout - max rate 50kHz, 100x 
faster readout 

• Factor 100x target integrated luminosity over 
full program


• Will allow to study


• D-mesons down to pT=0


• B-mesons down to low pT


• ΛC down to low pT ~2 GeV/c 

• Λb down to low pT ~2 GeV/c

~20μm at 1GeV/c 
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ΛC measurement in Pb-Pb collisions

• Simulation studies - HIJING events at √sNN = 5.02 TeV with 
detector simulation including full geometry of ITS upgrade


• Topological cuts, PID tuned on simulation


• Expected statistical significance of ΛC signal extraction (S/
sqrt(S+B)) > 8 corresponds to statistical uncertainty > 12%


• Can we do better?
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ITS upgrade TDR - J. Phys. G 41 (2014) 087002

http://dx.doi.org/10.1088/0954-3899/41/8/087002


Method - BDT
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• BDTs trained on simulation (similar to pp/p-Pb analysis), and 1 
dimensional classifier constructed attempting to maximise signal/
background separation.
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• Cuts chosen on BDT response improving standard cut-based method such that: 
1. Improve background rejection for same signal efficiency 
2. Improve signal efficiency for same background rejection
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• BDTs trained on simulation (similar to pp/p-Pb analysis), and 1 
dimensional classifier constructed attempting to maximise signal/
background separation.

• Cuts chosen on BDT response improving standard cut-based method such that: 
1. Improve background rejection for same signal efficiency 
2. Improve signal efficiency for same background rejection
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• BDTs trained on simulation (similar to pp/p-Pb analysis), and 1 
dimensional classifier constructed attempting to maximise signal/
background separation.

• Cuts chosen on BDT response improving standard cut-based method such that: 
1. Improve background rejection for same signal efficiency 
2. Improve signal efficiency for same background rejection



Method - BDT

• Cuts chosen on BDT response improving standard cut-based method such that: 
1. Improve background rejection for same signal efficiency 
2. Improve signal efficiency for same background rejection
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• BDTs trained on simulation (similar to pp/p-Pb analysis), and 1 
dimensional classifier constructed attempting to maximise signal/
background separation.

Improvement in signal extraction is then assessed



Invariant mass distributions

• Invariant mass distributions corresponding to improved background rejection case 
• Signal, background distributions scaled to expected integrated luminosity, expected signal 

yield and suppression (RAA) hypothesis 
• Significant improvement seen when using BDTs with respect to standard, topological cuts
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S/B, improved background rejection

• Significant improvement up to 30x in the S/B


• Corresponds to up to 6x improvement in the statistical significance (statistical uncertainty)
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• Significant improvement up to 5x in the S/B


• Corresponds to up to 5x improvement in the statistical significance (statistical uncertainty)
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S/B, improved signal efficiency
My thesis



A beautiful baryon

• Measurement of Λb will further 
help constrain coalescence/
diquark models


• Λb study with ITS upgrade has 
shown that the measurement is 
at the limit of the expected 
performance (full Run3/4 dataset)


• A multivariate approach is also 
being studied here - could hugely 
benefit measurement 
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Summary
• Heavy-flavour baryon measurements can tell us a lot about heavy-flavour 

production and hadronisation processes


• Measurement in pp, p-Pb collisions larger than expectations


• Hints of enhanced charmed baryon production in AA collisions


• Modified hadronisation in hadron collisions?


• The use of multivariate analysis methods can help us when extracting a small signal 
from a large background


• Run 3/4 at the LHC will allow for a precision measurement of charmed baryons in 
Pb-Pb collisions


• Many more exciting measurements ahead!
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Backup
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BDT analysis

• Statistical uncertainty reduced from BDT analysis
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Merging decay channels
• Statistically uncorrelated analyses - different decay channels.


• Uncorrelated uncertainties - raw yield extraction, ΛC selection, PID 
efficiency. Additional semileptonic uncertainties considered uncorrelated


• Correlated systematic uncertainties - tracking efficiency, generated ΛC pT 
shape, b feed-down, luminosity


• Statistically correlated analyses - same decay channels, different analysis 
techniques.


• Statistical uncertainty treated as fully correlated (checked, good 
approximation)


• Uncorrelated uncertainties - raw yield extraction


• Correlated systematic uncertainties - ΛC selection, PID efficiency, 
tracking efficiency, generated ΛC pT shape, b feed-down, luminosity
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