Search for $H^+ \rightarrow cbbar$

Geumbong Yu*1, Un-ki Yang1, Yeon-Jae Jwa1, John Almond1, Alice Magnani2, Cristina Riccadi2

> ¹ Seoul National University ² University & INFN Pavia

ARC review meeting, 12/12/17

Basics

- H+→cbbar study was started on demand after H+→csbar study was published
- Consider light H⁺ search from top quark decays : M(H⁺)<M(t)
- Famous 2HDM four different types : type-Y expects sizable branching ratio of H+→cbbar
- The search is performed assuming B(H+→cbbar)=100% and aims to measure B(t→H+b) in lepton+jets top quark pair events

Modified from Kei Yagyu et al., arXiv:0902.4665v3

Search Strategy

- Simultaneous fit both 2 b-tag and 3 b-tag events
 - In 2 b-tag region: extract SM ttbar normalization
 - In 3 b-tag region: extract the signal with a constrained SMttbar background from 2 b-tag events
- Look for a second peak over W from SM ttbar in the di-jet mass distribution
 - Template fit on the di-jet mass distribution
- When no excess is observed, the limit on B(t→H+b) will be estimated using Asymptotic CLs method (Combine)

Event Selection

- Single lepton trigger (8TeV)
 - IsoMu24_eta2p1
 - Ele27_WP80
- Final state object (based on run-ITRS):
 - one well-identified, isolated lepton (Veto events with additional veto lepton)
 - electron (p_T>30GeV, |η|<2.5) or muon (p_T>26GeV, |η|<2.1)
 - \geq 4 jets with p_T>30 GeV, $|\eta|$ <2.4
 - ≥ 2 jets identified as having a secondary vertex (CSVM)
 - MET ≥ 20 GeV
- Jet energy corrected up to particle-level jets (L1,L23)

0000

g

q

TTbar kinematic fitter

W⁺ or H⁺

- Assign leading four jets to four partons of ttbar
- Constrain masses except the hadronic boson
- Combination satisfying a set of goodness cuts & minimum χ^2 selected for template
 - ~55%(ttbar),~65% (H⁺) success rate

B-jet assignment (3b-jets)

- In 2b-jets selection, both b-jets assigned to top-b-quarks only
- In 3b-jets
 - Two b-tagged jets assigned to direct top-bquark and H⁺-b-quark
 - Force lower p_T b-tagged jet to direct topb-jet (for M(H⁺)≥130GeV)

Issue with 3b-tag normalization (Update for paper)

Event Yields in 3b-tag region

- >10% discrepancy in 3 b-tag region
- Known issue with ttbar modeling in terms of b-jet multiplicity
 - Could be the mis-modeling of $g \rightarrow bb$
- \geq 3b-tag is sensitive to the H+ \rightarrow cbbar signal
 - Careful with the ttbar normalization because the excess can be from the signal contribution
 - Normalization factor came from ttbar dilepton channel where the signal contribution is negligible

PAS HIG-16-030

μ +jets	1 b-tag	2 b-tag	3 b-tag
tī+jets	81622 ± 91	51823 ± 69	4755 ± 21
QCD multijet	2446 ± 42	597 ± 17	51 ± 5
Single Top	4829 ± 47	2212 ± 30	169 ± 8
W/Z+jets	11982 ± 417	1306 ± 127	64 ± 12
WW/WZ/ZZ	330 ± 6	62 ± 2	7 ± 1
tī+W/Z/H	322 ± 2	195 ± 2	41 ± 1
Total Bkgd	101531 ± 431	56195 ± 149	5087 ± 26
Observed	102404	57593	5754

e+jets	1b-tag	2b-tag	3b-tag	
t ī +jets	69289 ± 83	43592 ± 63	4007 ± 19	
QCD multijet	6187 ± 87	1116 ± 33	82 ± 8	
Single Top	4069 ± 43	1882 ± 28	147 ± 8	
W/Z+jets	10351 ± 368	1098 ± 114	79 ± 20	
WW/WZ/ZZ	290 ± 5	56 ± 2	5.4 ± 0.4	
t ī +W/Z/H	279 ± 2	169 ± 2	35 ± 1	
Total Bkgd	90464 ± 389	47911 ± 137	4355 ± 30	
Observed	92877	50542	4848	
			15	

Scale factor from ttbb/ttjj study

Table 4: The measured cross sections $\sigma_{t\bar{t}b\bar{b}}$ and $\sigma_{t\bar{t}j\bar{j}}$ and their ratio are given for the visible phase space (PS) defined as two leptons with $p_T > 20 \text{ GeV}/c$ and $|\eta| < 2.4$ plus four jets, including two b jets with $p_T > 20 \text{ GeV}/c$ and $|\eta| < 2.5$, and the full phase space, corrected for acceptance and branching fractions. The full phase space results are given for jet thresholds of $p_T > 20$ and 40 GeV/c. The uncertainties shown are statistical and systematic, respectively. The predictions of a NLO theoretical calculation for the full phase space and $p_T > 40 \text{ GeV}/c$ are also given [16].

Phase Space (PS)	$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$\sigma_{t\bar{t}jj}$ [pb]	$\sigma_{t\bar{t}b\bar{b}}/\sigma_{t\bar{t}jj}$
Visible PS (particle)			
Jet $p_{\rm T} > 20 {\rm GeV}/c$	$0.029 \pm 0.003 \pm 0.008$	$1.28 \pm 0.03 \pm 0.15$	$0.022 \pm 0.003 \pm 0.005$
Full PS (parton)			
Jet $p_{\rm T} > 20 {\rm GeV}/c$	$1.11 \pm 0.11 \pm 0.31$	$52.1 \pm 1.0 \pm 6.8$	$0.021 \pm 0.003 \pm 0.005$
Jet $p_{\rm T} > 40 {\rm GeV}/c$	$0.36 \pm 0.08 \pm 0.10$	$16.1 \pm 0.7 \pm 2.1$	$0.022 \pm 0.004 \pm 0.005$
NLO calculation			
Jet $p_{\rm T} > 40 {\rm GeV/c}$	0.23 ± 0.05	21.0 ± 2.9	0.011 ± 0.003

TOP-13-010 PLB 746, 2015

- Direct comparison was made for the ttbb production
 - Gives a scale factor of 1.56 with an uncertainty of 42%
 - This scale factor is applied to the events when (#b-tagged jets -#b-tagged jets from W) ≥ 3 assuming it is the ttbb events

Event Yields

Fixed from paper draft

Table 1: Event yields in a muon or an electron with four jets selection from simulation samples and data corresponding to 19.7 fb⁻¹ of pp collisions at $\sqrt{s} = 8$ TeV. Statistical error is considered in each yield.

	μ+je	ets	e+jets		
	2 b-tags	\geq 3 b-tags	2 b-tags	\geq 3 b-tags	
tī	52236 ± 70	5582 ± 25	43935 ± 63	4692 ± 23	
Single Top	2212 ± 30	169 ± 8	1882 ± 28	147 ± 8	
$t\bar{t}+W/Z/H$	195 ± 2	41 ± 1	169 ± 2	35 ± 1	
W/Z+jets	1305 ± 127	13 ± 7	1098 ± 114	32 ± 19	
WW/WZ/ZZ	62 ± 2	5 ± 1	56 ± 2	4 ± 1	
QCD multijet	554 ± 16	126 ± 14	1064 ± 33	139 ± 14	
Expected	56566 ± 149	5935 ± 31	48203 ± 137	5049 ± 34	
Observed	57593	5754	50542	4848	

- The event yields with pre-selection (before fitter)
- ttbb, (#b-tagged jets #b-tagged jets from W) ≥ 3, events are scaled up by 1.56

New Templates

Systematic Uncertainties

- All uncertainties are taken as shape systematics except
 - ttbar xsec, ttbb scale factor(added new), luminosity, pileup corrections to MC, scale factors (B-tagging,lepton)
- Jet-related uncertainty:
 - Jet energy correction&resolution/Flavour dependent uncertainty
- Top-related uncertainty:
 - TTbar p_T shape shift/NLO-vs-LO production/top quark mass shift
- MonteCarlo uncertainty:
 - MatrixElement event generation matching to Pythia hadronization/ Factorization scale (Q²)/Pythia-vs-Madgraph ttbar p_T difference

Summary of Syst. Unc.

Table 2: Summary of the systematic uncertainties in the search for a charged Higgs boson covering both the μ +jet and e+jet channels. For cases where the uncertainties in the μ +jet and e+jet channels differ, range is given. Rate uncertainties for the H⁺ signal, t \bar{t} , non-t \bar{t} are listed for the 2 b-tag and 3 b-tag selections, and the uncertainties marked with (s) are used for shape systematic uncertainties.

Source of uncertainty	signal (m _H + = 120)		t	tī		n-t ī	QCD multijet	
	2 b-tag	3 b-tag	2 b-tag	3 b-tag	2b-tag	3 b-tag	2 b-tag á	3 b-tag
tt cross section	6.5	20	6.5	20				
Top quark mass	5 (s)	5 (s)	5 (s)	5 (s)				
$t\bar{t} p_T$ reweighting	(s)	(s)	(s)	(s)				
NLO-vs-LO shape	8 E 0 0 (a)	76 29 (2)	0 2 0 E (a)	8.0 (a)				
(Powheg-vs-MadGraph)	6.5–9.0 (S)	7.0-5.8 (s)	0.3-0.5 (S)	8.U (S)				
FYTHIA-MADGRAPH $p_T(t\bar{t})$ difference	(s)	(s)						
ME-PS matching			0.6-0.8 (s)	0.8-1.4 (s)				
ttbb production reweight			0.6 (s)	12(s)				
Renormalization and factorization scales	4.0-4.2 (s)	6.8–7.2 (s)	1.3-1.7 (s)	1.3-2.0 (s)				
Jet energy scale (JES)	4.6-5.3 (s)	5.0-5.9 (s)	3.4 (s)	3.3 (s)	7.5–9.6 (s)	0.9–2.8 (s)		
Flavour-dependent JES (b-quark)	0.3-0.4 (s)	0.2-0.6 (s)	0.1 (s)	9.0 (s)	0.1-0.7 (s)	0.5-0.9 (s)	\wedge	
Flavour-dependent JES (udsc,g)	0.9-1.2 (s)	0.4-0.6 (s)	1.0 (s)	9.0 (s)	3.1-4.1 (s)	1.1-1.8 (s)		
Jet energy resolution	0.1-0.2 (s)	0.2-0.8 (s)	0.3 (s)	0.4 (s)	1.1 (s)	1.5 (s)		
B-tag scale factor for b/c-quark jets	1.2-2.1	5.6-5.8	3.6	5.7	2.9-3.0	4.0-4.4		
Mis-tag scale factor for light quark jets	0.1 - 0.2	0.2-0.7	0.2	0.3-0.7	0.7-1.3	0.3-0.4		
Fileup reweighting	≈ 0.5							
Electron scale factor (e+jets)			3.	.0				
Muon scale factor (μ +jets)			3.	.0				
Luminosity			2.	.6				
Data-driven prediction					//		Shift anti-Iso _{rel} reg	gion, < 10 (s)

Limit Setting

Limits calculated using Asymptotic Method

New limit

PAS HIG-16-030

Update on ttbb cross section weight & systematic shape correction, expected limit on H+(90GeV) is reduced from 1.1% to 0.9%

Summary

- This analysis is the first physics result on H⁺ to cbbar exotic decay expected in type-Y model other than the MSSM
 - So far this result is the most stringent limit for hadronic decay of light H⁺
 - It is important to be published in a referred journal considering big interest on the H⁺ among theory-community and BSM search community
 - This results are dominated by the systematic uncertainty
- Since the PAS we have a good control on the 3b-tag background
- No remaining issue on this analysis and we are ready to go
 - Paper draft is updated and AN is up to date as well

backup

Top-Specific (TS) corrections

- Particle level jets \rightarrow Parton level energy ullet
- Flavor dependent correction due to different jet ulletconstituents and detector response
- Corrections obtained from ttbar MC sample ullet
- Jet pT response (f) is fitted to a function of pT in 9 different jet η region

topb res eta

Mean

RMS

BMS \

Mean y

Top-specific corrections

- With this correction reconstructed mass (W+, H+, top) gets closer to the true value and its resolution improved by 7~9% in SM ttbar and H+ signal
- This correction is applied to leading four jets in both MC simulation samples including H⁺ signal and data

normalization in 3b-tags region (approval 2016)

- Get 3 b-tag SF from di-lepton ttbar
 - Signal Insensitive
- Among the two jets assigned to H⁺ w/o 3b SF
 - The SF of 1.23 was applied if extra bjet (not from W boson) is used for the template
 - Assume this scales up ttbar+bb
- This may not be appropriate
 - It scales events based on the assigned jets not based on the production w/ 3b SF

template used for the limit

Preliminary Talk, 30/6/16

3b/2b normalization from dilepton

		2b-tag		3b-tag	
		MC	DATA	MC	DATA
 Dilepton events are sel 	ee	2913	3000	75	96
	eμ	equirir	1 96 076	136	170
	μμ	3088	3154	68	84
 at least two jets with 		12148	12230	281	348

DOSITE Sign?b: data=2.8%±0.15% MC=2.3%±0.14% SF for MC=1.23±0.1

Apply this SF to 3b ttbar template Kinematic Distribution (before fitter) 3b region renormalized

Number of Events/ 5.4 GeV

10

10²

10

0.5

Obs. / Pred.

GeV

B

5

Obs. / Prod

Kinematic Distribution (after fitter) 3b region renormalized

Normal Fitter: $90 \le m(H+) \le 120 \text{ GeV}$

Normal Fitter:90 \leq m(H+) \leq 120 GeV

35

Normal Fitter:90 \leq m(H+) \leq 120 GeV

36

High Mass Fitter: $90 \le m(H+) \le 120 \text{ GeV}$

37

High Mass Fitter: $130 \le m(H+) \le 150$ GeV

High Mass Fitter: $130 \le m(H^+) \le 150 \text{ GeV}$

Systematic Shapes

pt(TT) reweight

black(template) & red(syst. template)

Powheg

black(template) & red(syst. template)

m(top) I72.5±IGeV

Q^2

Pythia vs Madgraph (H+ signal only)

black(template) & red(syst. template)

Jet Energy Scale

Jet Energy Resolution

L5Buncertainty

L5UDSCGuncertainty

BtagSF

MistagSF

MLF & Impact (H+ 90GeV)

BR=0.0033 (-0.0033+0.0041)

MLF & Impact (H+ 100GeV)

BR=0.0039 (-0.0035+0.0034)

MLF & Impact (H+ 110GeV)

BR=0.0036 (-0.0030+0.0039)

MLF & Impact (H⁺ I40GeV)

BR=0.0000 (-0.0000+0.0009)

