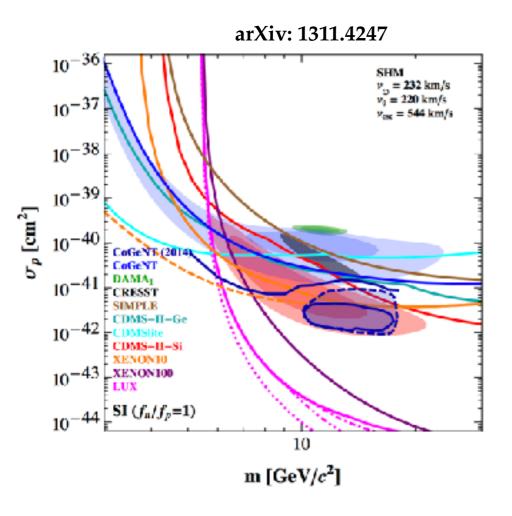
Unified Halo-Independent Formalism for Direct Detection Experiments

Samuel J. Witte IFIC, CSIC-University of Valencia

Based on JCAP12(2017)039, in collaboration with G. Gelmini, J.H. Huh

Direct Detection Circa 2013



Various dark matter 'hints' juxtaposed against strong upper limits

Viability of a given signal dependent upon various assumptions

$$\frac{dR}{dE_{\rm R}} = \underbrace{\rho_{\chi} C_T}_{m_{\chi} m_T} \int_{v \ge v_{\rm min}(E_{\rm R})} d^3v f(\vec{v}, t) v \underbrace{\frac{d\sigma_T}{dE_{\rm R}}(E_{\rm R}, \vec{v})}_{}$$

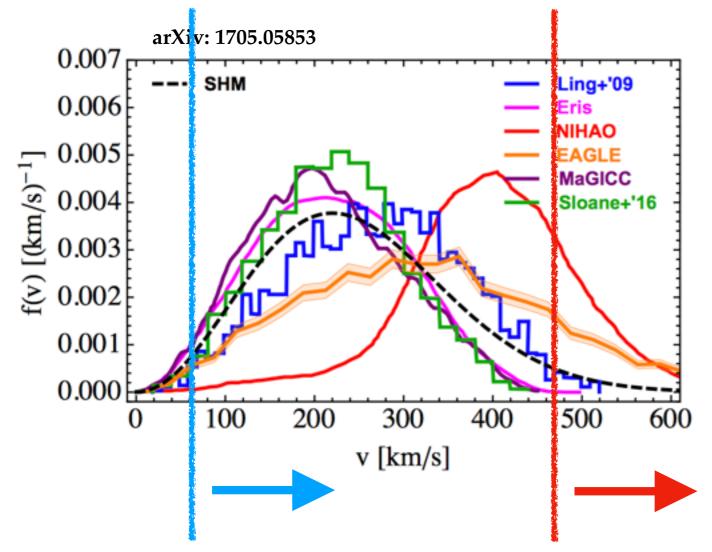
<u>Astrophysics</u>

- Local dark matter density
- Dark matter velocity distribution

Particle Physics

- SI, SD, Magnetic (Electric) Dipole, etc.
- Proton/neutron couplings
- Scattering kinematics

Astrophysical Uncertainties



Much of what we know comes from simulations

Most problematic when experiments probe the tail of the distribution

E.g. light WIMPs, inelastic scattering, etc

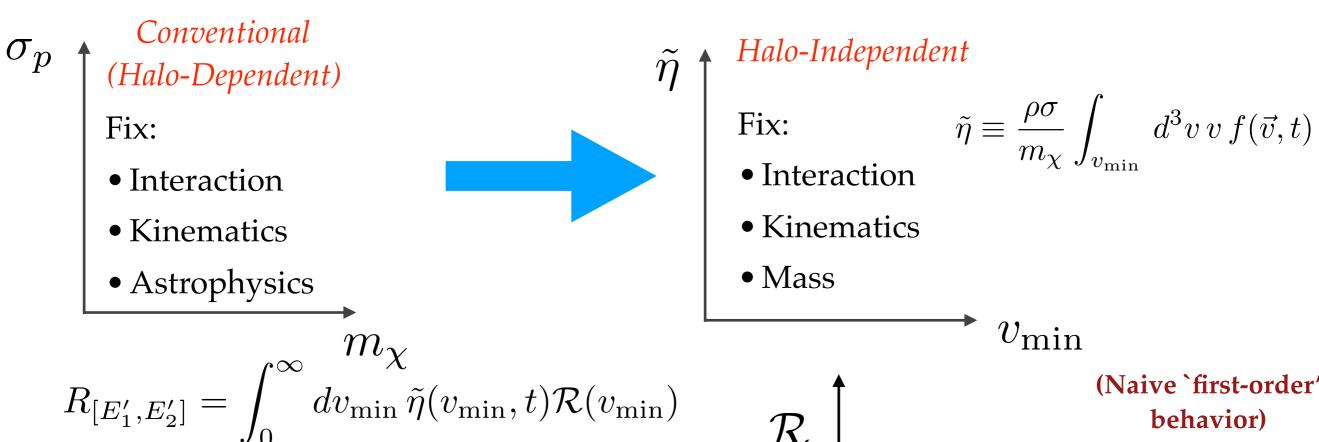
$$\frac{dR}{dE_{\rm R}} = \frac{\rho_{\chi} C_T}{m_{\chi} m_T} \int_{v > v_{\rm min}(E_{\rm R})} d^3 v f(\vec{v}, t) v \frac{d\sigma_T}{dE_{\rm R}} (E_{\rm R}, \vec{v})$$

Experiments sensitive to v > v_min(Target, DM mass)

Considering different halo functions (i.e. f(v)) can alter the sensitivity of an experiment by orders of magnitude...

Halo-Independent Analyses

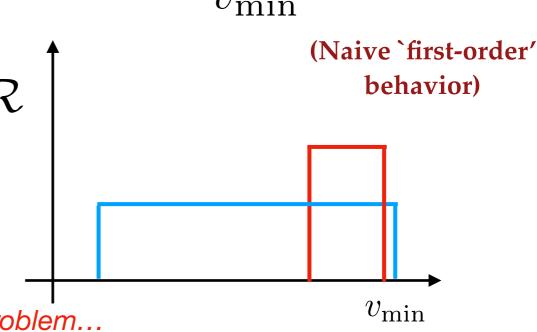
Can we analyze direct detection data without making any assumptions on the underlying astrophysical distribution?



Early Issues related to putative signals:

- Required `ideal experiments'
- Statistical interpretations quite ambiguous (at best)
- Required unbinned measurements of data and background
- Could only be applied to time-averaged rate

Problems because this is effectively an infinite dimensional problem...



New Halo-Independent Formalism

(Derived from Convex Hulls)

Goal:

Develop a new halo-independent formalism that can be applied to any experiment/dataset with a concrete and meaningful statistical interpretation

JCAP12(2017)039 Gelmini, Huh, SJW

(Frequentist method based on use of likelihood ratio)

$$\mathcal{L}(R_1,R_2,\cdots)$$

Road Map:

- 1. Prove all likelihoods are necessarily strictly convex functions of the predicted rate
 - Likelihood maximized by $\ \hat{ec{R}}=(\hat{R}_1,\hat{R}_2,\cdots,\hat{R}_{\mathcal{N}})$
- 2. Use theorems from convex geometry to argue that the set of rates that maximize the likelihood can always be obtained from very simple halo functions

• Either
$$f_G(\vec{u}) = \sum_{i=1}^{\mathcal{N}} f_i \, \delta^3(\vec{u} - \vec{u}_i)$$
 or $F(v) = \sum_i^{\mathcal{N}} F_i \, \delta(v - v_i)$

- 3. Use point (2) to reduce the infinite dimensionality problem
 - Construct halo-independent confidence bands

Aside into Convex Geometry

Convex Set

Let A be a convex set in a D-dimensional vector space.

For any collection of \vec{x}_i vectors in \mathcal{A} , and semi-positive definite coefficients λ_i w/ $\sum_i \lambda_i = 1$

$$\sum_{i} \lambda_{i} \ \vec{x}_{i} \in \mathcal{A}$$

$$A$$

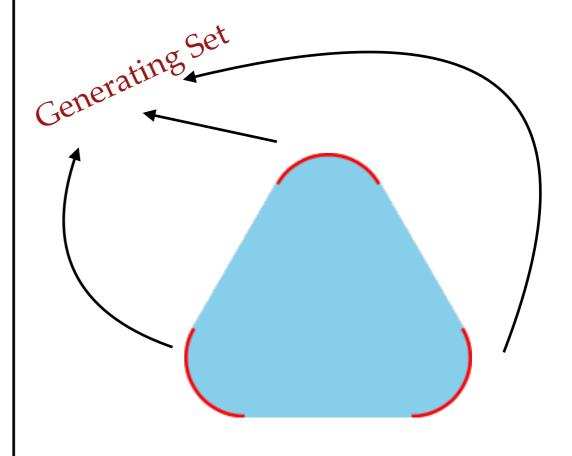
$$X$$

$$Convex Set$$

$$Not a Convex Set$$

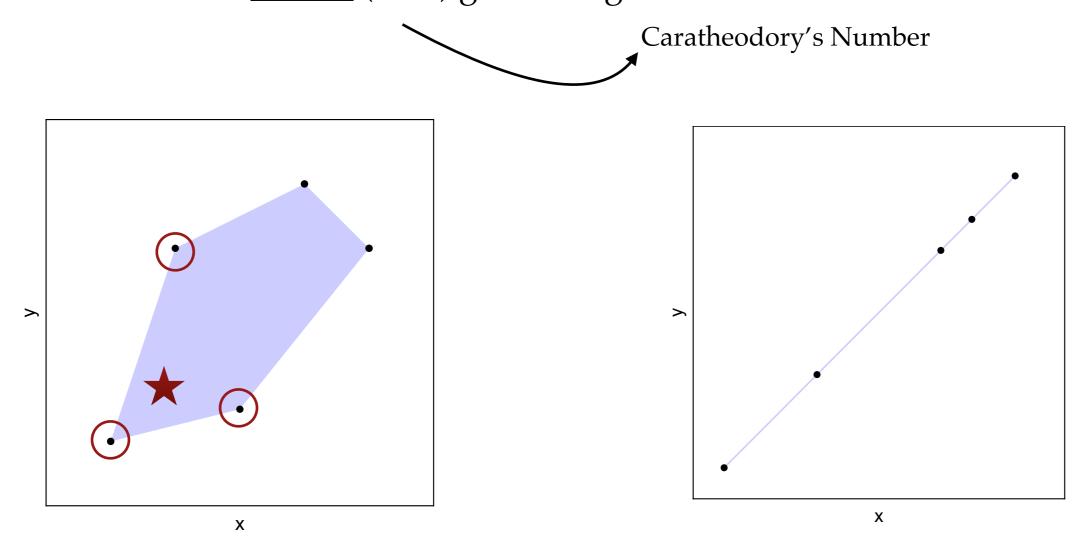
Convex Hull

Given `generating set' *Y*, the convex hull is the minimal (unique) convex set containing *Y*



Caratheodory's Theorem (1907)

Lets say we have a convex hull in dimension D defined by generating set X Any element in the convex hull can be expressed as a convex combination of <u>at most</u> (D+1) generating vectors

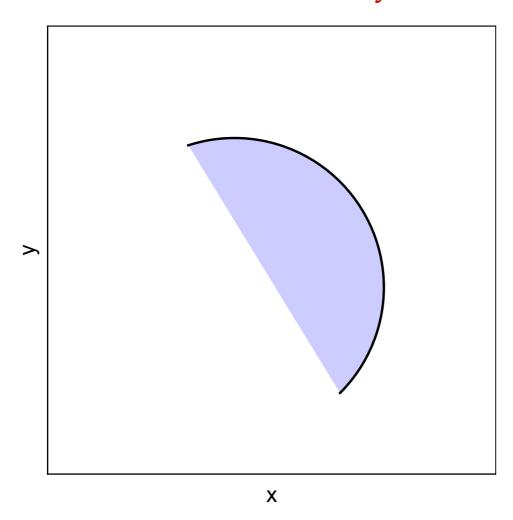


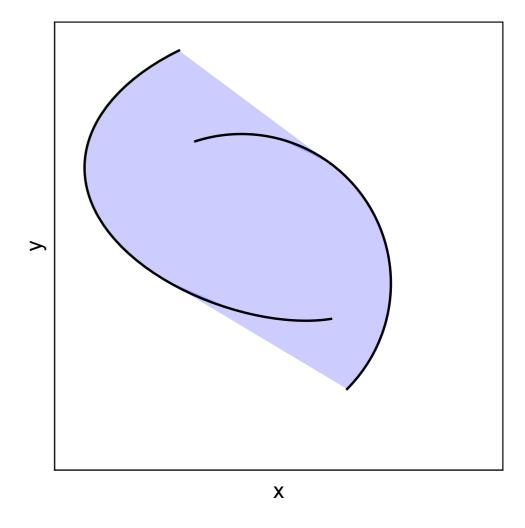
Reminder: Convex combination implies coefficients are semi-positive definite and sum to 1

Fenchel-Eggleston Theorem (1953/58)

Consider Caratheodory's theorem, but in the limiting case where the generating set consists of at most D connected sets

Caratheodory's number is reduced from (D+1) to D





So... why did I make you learn that...?

$$\vec{R} = \mathcal{C} \int_0^\infty dv \frac{\vec{\mathcal{H}}(v)}{v} F(v) \to \sum_i \mathcal{C} \frac{\vec{\mathcal{H}}(v_i)}{v_i} F(v_i) dv_i$$

$$\vec{\mathcal{H}}(v) = (\mathcal{H}_1(v), \mathcal{H}_2(v), \cdots)$$

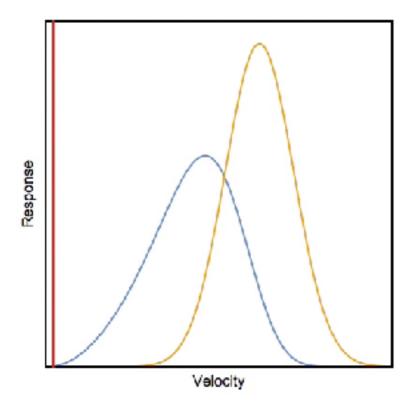
With requirements:

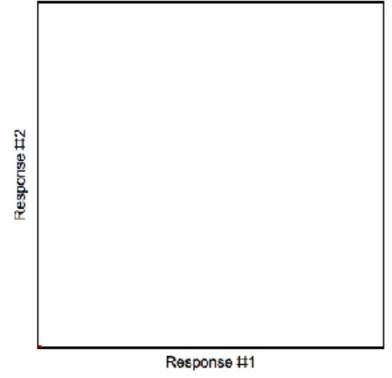
$$\forall v, F(v) \geq 0$$

$$\left(\sum_{i} dv_{i} F(v_{i}) = 1\right)$$

Define a convex hull all possible rate vectors using the infinite generating set:

$$\left\{ \mathcal{C} \frac{\vec{\mathcal{H}}(v_i)}{v_i} \right\} \in \mathcal{A}$$





Rate vector maximizing likelihood

$$\hat{\vec{R}} = (\hat{R}_1, \hat{R}_2, \cdots, \hat{R}_{\mathcal{N}})$$

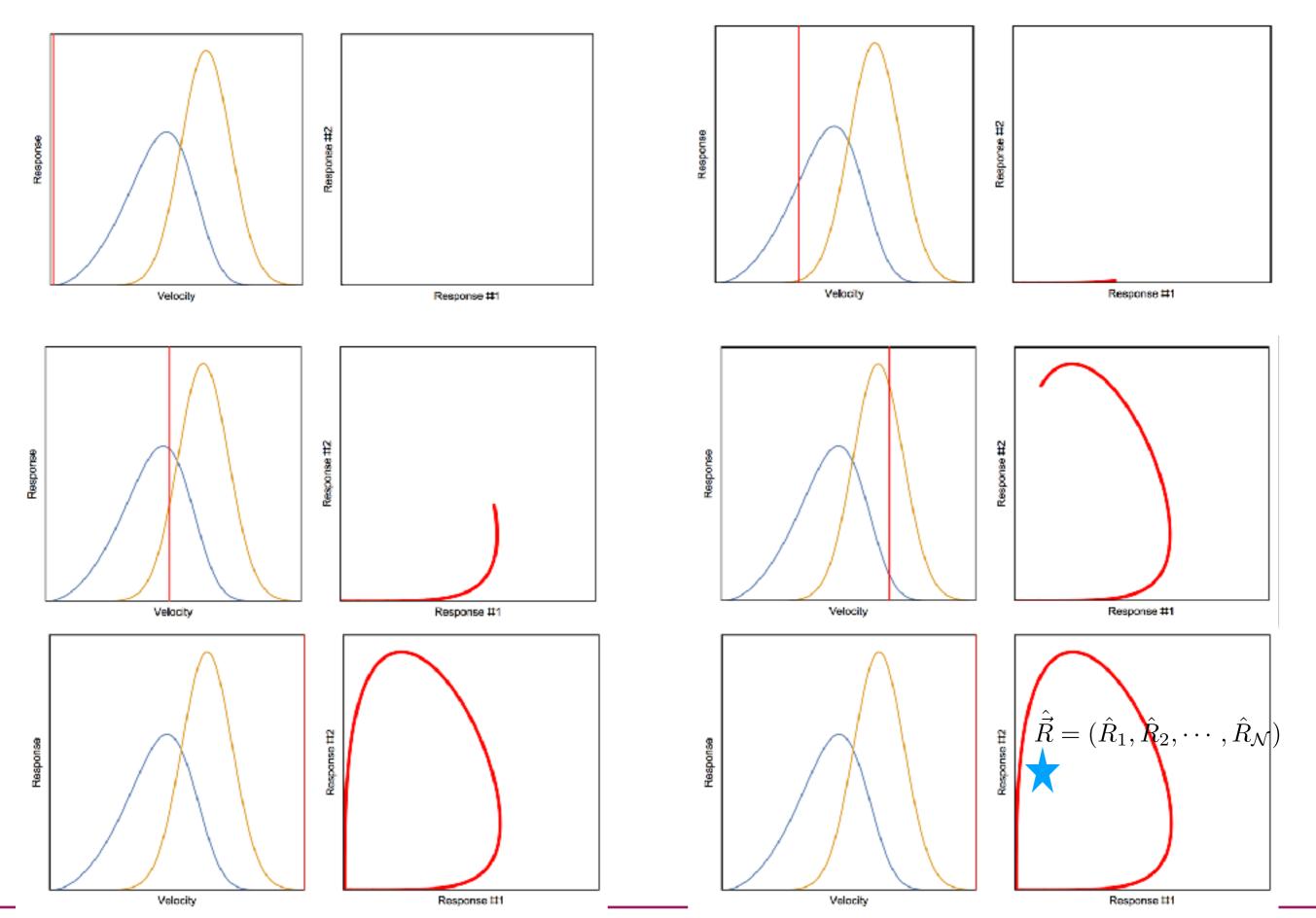
is contained in convex hull

$$\hat{\vec{R}} = \sum_{i} \lambda_{i} \times \mathcal{C} \frac{\vec{\mathcal{H}}(v_{i})}{v_{i}}$$

$$\sum_{i} \lambda_i = 1$$

Consequently:

$$F(v) = \sum_{i}^{N} F_i \, \delta(v - v_i)$$

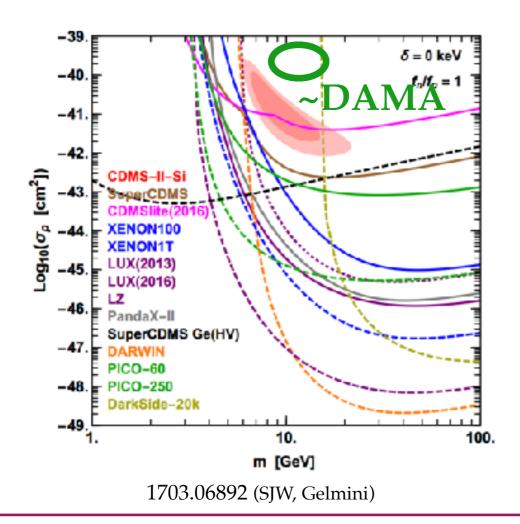


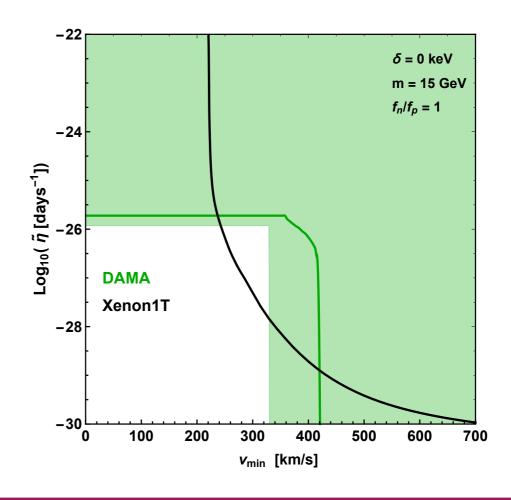
RENATA Thematic Meeting on Dark Matter February 6 2018

Halo-Independent Method from Convex Hull

Additional Comments (that I don't have time to describe in detail):

- Can apply similar logic to measurements of annual modulation
- Can enforce additional symmetries (e.g. isotropy in galactic frame, triaxial symmetry, etc)
- Allows for joint analysis with indirect detection
 - Capture rate in Sun depends on halo model, see e.g. Ibarra and Rappelt 2017





Back-up Slides

Developing a Confidence Band

Conventional Neyman-Pearson Likelihood Ratio:

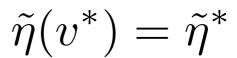
$$\Delta L[\tilde{\eta}] \equiv L[\tilde{\eta}] - L_{\min} \le \Delta L^*$$

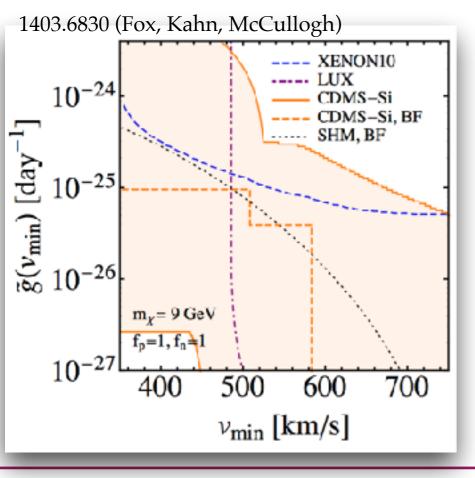
(Impossible on practical level)

New Question: Does there exist at least one halo function compatible at the desired CL?

$$\Delta L_{\min}^c(v^*, \tilde{\eta}^*) \equiv L_{\min}^c(v^*,]\tilde{\eta}^*) - L_{\min} \leq \Delta L^*$$

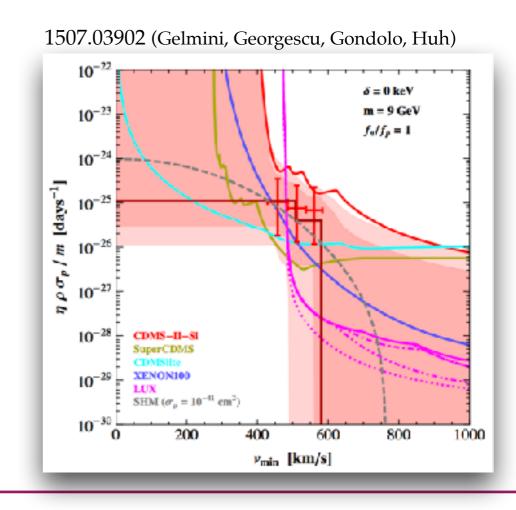
$$L_{\min}^c(v^*, \tilde{\eta}^*) \equiv \min(L[\tilde{\eta}])$$



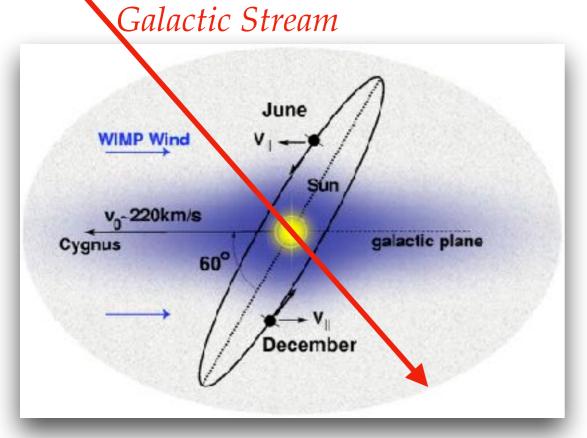


Be careful with interpretation!

This method offers clear interpretation, can we generalize it?



Annual Modulation



Earth's rotation about the Sun produces modulation in the scattering rate

Conventionally, assume form of f(v) in Galaxy, use Galilean transformation

$$\vec{u} = \vec{v}_{\odot} + \vec{v}_{\oplus}(t) + \vec{v}$$

Recall:

$$R_{\alpha i}(t) = \int d^3 v \, \mathcal{C} \, \frac{\mathcal{H}_{\alpha i}(\vec{v})}{v} \, f(\vec{v}, t)$$

Let us now change variables to absorb time-dependence in H:

$$R_{\alpha i}(t) = \int d^3 u \, \mathcal{C} \, \frac{\mathcal{H}_{\alpha i}^{\text{gal}}(\vec{u}, t)}{|\vec{u} - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)|} \, f_G(\vec{u})$$

Note we are now working with velocity, not speed, distribution

Annual Modulation

Time-averaged halo function:

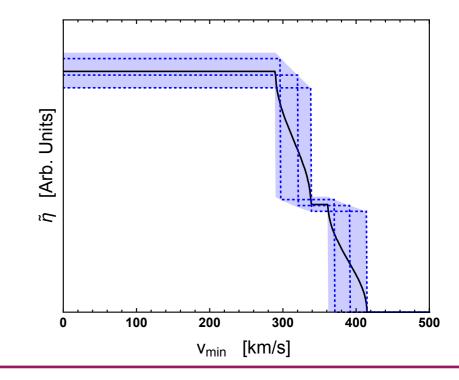
$$\tilde{\eta}_{BF}^{0}(v_{\min}) = \sum_{h=1}^{\mathcal{N}} \frac{\mathcal{C}f_{h}^{\text{gal}}}{\bar{v}_{h}(v_{\min})} \qquad \frac{1}{\bar{v}_{h}(v_{\min})} \equiv \frac{1}{T} \int dt \, \frac{\Theta(|\vec{u}_{h} - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)| - v_{\min})}{|\vec{u}_{h} - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)|}$$

A few notes:

- Now working with 3D velocity distribution rather than speed
 - Numerical minimization done done w.r.t. 4N parameters (quickly becomes numerically taxing)
- Best-fit halo function <u>only</u> piecewise constant at fixed times
- Require <u>at most</u> N streams, not (N 1)

Constrained Analysis:

$$\tilde{\eta}^* = \mathcal{C} \sum_{h=1}^{N+1} f_h^{\text{gal}} \frac{1}{T} \int dt \, \frac{\Theta(|\vec{u}_h - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)| - v^*)}{|\vec{u}_h - \vec{v}_{\odot} - \vec{v}_{\oplus}(t)|}$$



Isotropy

Enforcing isotropy makes velocity distribution more realistic and eases computation

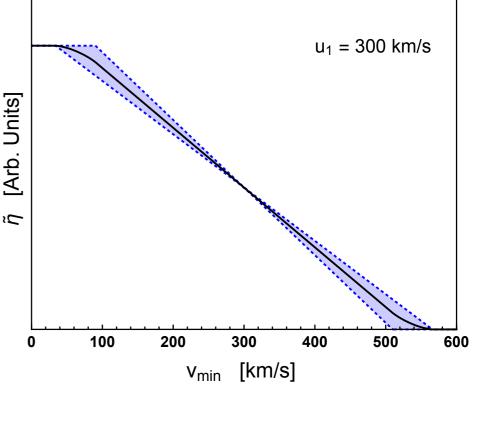
• Numerical simulations expect (more or less) isotropic distributions

$$f_G(\vec{u}) = f_G(|\vec{u}|)$$

$$R_{\alpha i}(t) = \int du \, \bar{\mathcal{H}}_{\alpha I}^{\mathrm{gal}}(u, t) \, F^{\mathrm{gal}}(u)$$

$$\bar{\mathcal{H}}_{\alpha i}^{\mathrm{gal}}(u, t) \equiv \frac{1}{4\pi} \int d\Omega_u \mathcal{H}_{\alpha i}^{\mathrm{gal}}(\vec{u}, t)$$

$$F^{\mathrm{gal}}(u) \equiv 4\pi u^2 f^{\mathrm{gal}}(u)$$



$$\tilde{\eta}_{\mathrm{BF}}(v_{\mathrm{min}},t) = \sum_{h=1}^{\mathcal{N}} \mathcal{C}F_h \times \begin{cases} \frac{1}{u_h} & v_{\mathrm{min}} \leq u_h - u_{\oplus}(t) \\ \frac{u_{\oplus}(t) + u_h - v_{\mathrm{min}}}{2u_{\oplus}(t)u_h} & u_h - u_{\oplus}(t) < v_{\mathrm{min}} < u_h + u_{\oplus}(t) \end{cases}$$

Where:

$$u_{\oplus}(t) = |\vec{v}_{\odot} + \vec{v}_{\oplus}(t)|$$