columnar recombination and directional nucleus reconstruction

D. Gonzalez Diaz (IGFAE),

presenting work from **Manuel Fontaíña (graduate student)**, David Gonzalez (technical assistant), Damián Garcia (PhD student) and Marwan Ajoor (master student)

'top-down approach' to a directional signal

(aka: if all you have is a hammer, everything looks like a nail)

+ future range of experiments

from C. O'Hare

'bottom-up approach' to a directional signal

brief summary of the main approaches to the directional problem

columnar recombination

(rescued from oblivion by D. Nygren, Journal of Physics: Conference Series 460 (2013) 012006)

charge mode for Xe/TMA (direct method)

by D. C. Herrera

charge and light mode for xenon (indirect method)

- gas purity controlled!
- **charge** yield (diamonds)
- model-dependent charge-yield, from light (squares).

charge mode for Xe/TMA (direct method)

charge and light mode for xenon (indirect method)

- gas purity controlled!
- charge yield (diamonds)
- model-dependent charge-yield, from light (squares).

charge mode for Xe/TMA (direct method)

charge and light mode for xenon (indirect method)

- charge yield (diamonds)
 model-dependent charge
 - model-dependent charge-yield, from light (squares).

gas purity controlled!

charge mode for Xe/TMA (direct method)

charge and light mode for xenon (indirect method)

• n

• model-dependent charge-yield, from **light** (squares).

charge yield (diamonds)

gas purity controlled!

charge and light mode for xenon (indirect method)

gas purity controlled!

model-dependent charge-yield, from **light** (squares).

columnar recombination (some modern results for nuclear recoils in liquid)

columnar recombination and important parameters

• Onsager radius: $r lo = e l^2 / 4\pi \epsilon \ell le l \sim e l^2 / 4\pi \epsilon 3 / 2 KT$ in liquid (80nm for LAr, 54nm for LXe)

('size' of the interaction)

 $r lo = e 12 /4\pi\epsilon \ slel > e 12 /4\pi \ sum of the sum o$

- Track size: $\sim 90 \text{nm}/36.1 \text{ keV}_r$ for LAr $\sim 1/P \times 20 \mu \text{m}/30 \text{ keV}_r$ for xenon gas
- Diffusion coefficient: $\sim 240 \text{nm}/\sqrt{90 \text{nm}}$ for LAr $\sim 30 \ \mu\text{m}/\sqrt{20} \ \mu\text{m}$ @ 1bar for xenon gas with additives
- Drift velocity: a low value will enhance the effect but may lower electron lifetime.
- Multiple scattering: might be reduced with suitable dopants (difficult in liquid phase)
- Recombination light: present in noble gases and CF_4 , at least.
- Charge quenching: smaller the lighter the gas. More ionization -> more directionality.

good 'columnarity' signal!

gas vs liquid phase

phenomenological parameterizations exist for the 'bulk' ionization:

(e.g: NEST conveniently includes those for pure Ar and Xe)

MC simulations also exist, but only in specific cases.

Neither a fundamental theory nor sufficiently systematic measurements available for optimizing the columnar effect!

brief summary of the main approaches to the directional DM problem

why columnar recombination still pretty much alive?

R. Felkai, F. Monrabal, DGD et al., arXiV:1710.05600

basic setup at IGFAE (USC)

- Input stage (standard swagelok M6) based on mass-flow regulators, leak-tested down to 10⁻⁵ mbar 1/s @10bar.
- Recirculation system (all VCR) leak-tested down to <10⁻⁴ mbar l/s @6bar (commissioning at 10bar ongoing).
- Vacuum level down to 10⁻⁶ mbar after one night (system fully assembled).
- RGA sensitivity in the range 10-30ppms. (System purity under evaluation).
- Slow control system based on Arduino+NEXT-SC.
- Scope-based wvf acquisition at ~3-10Hz.
- Xe, CF4, Ar/Xe, N₂ bottles procured.
- Nausicaa0 used for testing novel acrylic thick-GEMs for NEXT.
- Nausicaal vessel foreseen as test-bed for large GEM tile (~20cm x 20cm) testing. Will be misused for the first months as a TPC!.

Loads of help from NEXT crew, impossible to acknowledge...

<u>Nausicaa0:</u> generic setup for testing new scintillating structures

PMT teflon-frame test assembly

Nausicaa0

single-photon PM response

acrylic hole-based scintillator (akin to GEMs, but x100 larger)

voltage across the tile: 5kV

• drift field: 1kV/cm/bar

• pressure: 3bar

• First light: signal seen in 3PMTs simultaneously!.

status and outlook

- Nausicaa0, for testing new scintillating structures, developed and almost fully operational (working at 6bar).
- Nausicaa1, in TPC configuration:
- 1) Design finished.
- 2) Construction of pieces started.
- 3) Assembly and commissioning foreseen by June 1st.
- 4) Experimental studies and simulations of columnar recombination in Ar-CF₄ and CF₄ for α -particles in the range 0.1-10bar will follow.
- 5) Complementary, measurements in NEXT and Xe/He mixtures are intended (the latter will require an upgrade).
- 6) The aim of the project is to determine favorable conditions for columnar recombination to be of any use in the future for either DM or $\beta\beta$ 0 experiments.