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ACDM cosmological model predicts lots of substructure — DM subhalos
Subhalo masses below 1O7M@ they do not retain gas (baryons) — no emission
BUT, if they annihilate (WIMP model) — DM-induced Gamma-ray emission
Fermi-LAT (2008-) — We have gamma-ray source catalogs

Lots of unidentified sources (unIDs) in catalogs — Some of them may be subhalos

N-body cosmological simulations — What do we expect?

We do not have a clear signal of DM annihilation — constraints on (av), m,
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DM ANNIHILATION IN THE WIMP MODEL

(17T
bb
XX = wWiw- =YY F(E > Eth) =]factor *fpp(E > Etn)
L 7,7, ” X

Astrophysics (Density Particle Physics (channel,
profile, distance...) annihilation spectra...)

— Instrument

(ov) My - Fmin _ My Foin
] . fE (dN) dE ]fClCtOT Ny < Theory
factor Exy \dE <

Simulations

We want to probe the lowest possible (0V) values to rule out WIMP candidates
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DM INTEGRATED SPECTRA
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DM INTEGRATED SPECTRA

* We want the integrated spectra,

Ny

* Dependance on the experiment’s

energy threshold
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MINIMUM DETECTION FLUX

- Minimum flux to have a 5-sigma detection over background

* Normally taken as the threshold flux of the catalog

* BUT, important dependance on annihilation channel,
source sky position and catalog setup



https: / /fermi.gsfc.nasa.gov/science /resources /sims/

|ldeal situation: only sources -




https: / /fermi.gsfc.nasa.gov/science /resources /sims/

Diffuse Gamma-ray background (DGRB)




https: / /fermi.gsfc.nasa.gov/science /resources /sims/

Diffuse Galactic emission — strong spatial dependance
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Easy to detect
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+ ¥ Difficult to detect |
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Actual picture
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| MINIMUM DETECTION FLUX

Also depends on the catalog ‘

Energy
Total

3FGL 2015 3033 1010 (33,3%) 100 MeV
2FHL 2015 360 48 (13,3%) 50 GeV
3FHL 2017 1556 177 (11,3%) 10 GeV

4FGL 20182 >5000 ¢ (30-40%) 100 MeV



J-FACTOR

* Via Lactea Il (VL-ll) simulation, DM only, Milky Way size
* Resolve subhalo masses down to ~1O6'2M@
.
* Every order or magnitude Iower in mass is exponentially
harder to compute

* Are unresolved low-mass subhalos imporiani for DM
subhalo searches?

YES ' Diemand+08 (0805.1244)




- J-FACTOR

A low mass subhalo close enough to
the Earth can have a bigger J-factor
than a further, massive subhalo



J-FACTOR Q,

* The less massive the subhalo, the

nearest must be to have a relevant flux

e Also, ] « ¢3 o« M3 (¢ =concentration,
bigger for lower masses)




J-FACTOR . (‘,
@

* We repopulate the simulation in a realistic
yet computationally feasible way

* We reach ~ 10_2M@




J-FACTOR

* The subhalos with the largest J-

factors could be some of the unlDs in
Fermi catalogs!

* As (ov) & J71, the higher the J-
factor, the better the constraints

* Therefore, we want to have the

lowest possible number of unIDs
candidates

* We apply selection cuts based on
expected DM subhalo properties

B 2FHL
B 3FHL
B 3FGL

0.2 0.4 0.6 0.8
Number of sources, normalized to full catalog

1.0
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Improved observational campaigns
provide new associations of unlDs (to
known astrophysical objects), which are
removed from our sample
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1. Association

2. Latitude

3. Variability

4. Machine learning
5. Multiwavelength
6. Spectral bump

The Galactic plane is a complex region
with lots of astrophysical objects (e.g.
pulsars) — cut in |b| < 10°
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SELECTION CUTS

DM subhalos expected to have a steady

1. Association flux — no variability (FAVA)

101
2. Latitude il ]
3. Variability £ 108 —-
: : 2 1074 :
4. Machine learning 2|
g 1075} ]
5. Multiwavelength S 10-6 __
ik, __,:_ —— Pulsar spectrum O
6. SpeCTrQI bUmp " (i bb spectrum \
y—# g | i i ’ T !
0 107 10*

Energy (MeV)
Ackermann+12 (1201.2691)



SELECTION CUTS

1. Association

2. Latitude

3. Variability

4. Machine learning
5. Multiwavelength

6. Spectral bump

Trained with the associated obijects, a machine
learning can predict with great accuracy the

type of source
Salvetti+17 (1705.09832), Lefaucheur+17 (1703.01822)




SELECTION CUTS

DM is not expected to emit in any other
wavelength, so exhibiting emission in IR,
1. Association optical, UV or X-ray is a cut

sed2124p3931 Ra=321.02399 deg Dec=39.52720 deg (NH=2.4E21 cmA-2)
-9

2. Latitude
3. Variability

|
=1

—_

]

4. Machine learning

w

5. Multiwavelength

Log vf(v) (erg cmA-2 sA-1)

6. Spectral bump

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Log frequency v (Hz)

o ZMASS o USHO 420 » allwise wl -« allwise w2 -+ WISE W1 FointPsf » WISE W2 PointPsf » ZFHL (92CeV) J- allwise w2 | allwise w4
o WISE W3 PointPsf - WISE W4 FointPsf - 2FHL (1081GeY) . 2FHL (316GeV)

tools.asdc.asi.it




SELECTION CUTS

1. Association

2. Latitude

3. Variability

4. Machine learning
5. Multiwavelength
6. Spectral bump

We expect a smooth spectrum, i.e., with
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| SELECTION CUTS

1. Association

2 Lot | odme | et
3. Variability 2FHL 48 10
4. Machine learning » 3FHL 177 54

5. Multiwavelength

3FGL 1010 60
6. Spectral bump
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CONCLUSIONS, CAVEATS AND PROSPECTS

The method proves to be complementary and competitive to other indirect
searches

Conservative yet realistic constraints

CAVEAT: The repopulation assumes this low-mass subhalos (S 107M@) are
not disrupted — Reasonable, but not 100% sure

More source associations and new gamma-ray catalogs — improvement

Future CTA is competitive where Fermi-LAT is not, closing the gap for high
masses

Thank you very much!



BACKUP SLIDES

(AKA ANSWERS FOR NON-EXISTENT QUESTIONS)



GALACTIC LATITUDE DISTRIBUTION
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