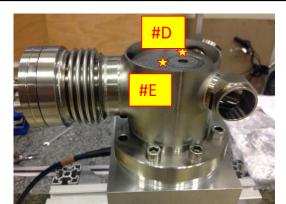

[10min] DQW cavity test results (summary)


- Same filter tested with cavity #001 and #002. Light BCP in filter between tests: from 2.8 to 3.6 MV.
- Quench field level lower than for bare cavity tests.
- Sharp quench with no significant radiation increase.
- Quench field higher in pulsed mode.

[10min] DQW cavity test results (summary)

Test US-DQWs		Surfaces	V _T (MV) [CW / pulsed]	V _{FE} (MV)	CERNOX signal
#1	(Feb)	Light BCP+HPR Flanges set #a	5.9 / 5.9	4.1	#A-5 (global max. B _{pk}) [#B-2 (FPC port flange) at 5.5 MV Q-switch event]
#2	(Jun)	Light BCP+HPR Flanges set #a			
#2	(Sep)	Light BCP+HPR Flanges set #a	5.3 / 5.3	2.8	#C-1 (input probe) #A-7 (global max. B _{pk})
#1+HOM	(May)	HOM filter rinsing Flanges set #b	2.8 / 3.4	n/a	#B-5 (FPC port flange) #D-7 (HOM filter) #E-8 (HOM filter)
#2+HOM	(Oct)	Light BPC+rinsing Flanges set #a	3.6 / 4.1	n/a	#F-4 (HOM port base) #D-7 (HOM filter) #E-8 (HOM filter)

[10min] DQW cavity test results (summary)

QUESTIONS

■ Thermal or magnetic quench?	 Sharp, sudden quench, no evidence in Q-slope. Pulsed operation allows reaching higher quench level: an indication of thermal quench. Alternatively, test at a different temperature and compare quench levels.
Field-emission related quench?	 No significant evidence of radiation. FE onset started at about 2.8 MV in cavity #002. Radiation monitor is on top of the Dewar. How do we explain thermosensor signals from #002+1HOM? No multipacting signature; only sharp, sudden quench.
How to interpret CERNOX signals?	 Thermal path is interrupted. Mechanism in vacuum is shorting path: multipacting or field-emission plasma. Can we trust readout? Increase redundance in next test.

[20min] Thermal simulations of HOM filter

(→ see Graeme Burt's slides)

[40min] Next simulations and test plans (for discussion)

PLANNED STUDIES

- Thermal gradient calculation in HOM filter for niobium Rs > 10 nOhm.
- Energy deposition on HOM filter by FE current electrons.
- Detailed MP studies on HOM filter region around quench field level.

NEXT TESTS (always using cavity #002)

- Is improved cavity+HOM performance from May to Oct associated to 20um BCP?
 TEST 1 → perform 50 um BCP + 120°C bake to complete standard surface treatment
- Discriminate if quench in cavity or filter...
 TEST 2 → use <u>spacer</u> to lower Hpk in filter and check if cavity+HOM reach higher field level.
- Is FE current responsible for the quench?
 TEST 3 → electropolishing (reduced surface roughness) or pure coaxial cavity

INSTRUMENTATION

- Is multipacting responsible for the quench?
 INSTR 1 → transmitted RF signal through antenna: DC current (FE), frequency components (MP)
 INSTR 2 → high rep. rate acquisition of transmitted RF signal (resolve MP and FE signatures)
- INSTR 3 → Redundant thermosensor locations.

[20min] Other topics relevant to the DQW test program

- Return HOM filter back to CERN
- 2) Expected delivery date of spacer to JLab
- 3) Instrumentation readiness at JLab