

Szymon KULIS, CERN on behalf of the IpGBT design team

Front-end Electronics Workshop 2018 20-25 May 2018 Jouvence, Canada

IpGBT Design Team

Design team:

- CERN:
- AGH UST:
- KU Leuven:
- UNL FCT:
- SMU Physics:
- SMU Engineering:

IP Cores:

- Czech Technical University Prague:
- CERN:

David Porret, Jose Fonseca, Ken Wyllie, Paulo Moreira, Pedro Leitao, Rui Francisco, Sophie Baron, Szymon Kulis, Daniel Hernandez

- Marek Idzik, Miroslaw Firlej, Jakub Moroń, Tomasz Fiutowski, Krzysztof Swientek
- Bram Faes, Jeffrey Prinzie, Paul Leroux
- João Carvalho, Nuno Paulino
- Datao Gong, Di Guo, Dongxu Yang, Jingbo Ye, Quan Sun, Wei Zhou
- Tao Zhang, Ping Gui

Miroslav Havranek, Tomas Benka Stefano Michelis, Iraklis Kremastiotis, Alessandro Caratelli

lpGBT: High Speed SerDes

- Data transceiver with fixed and "deterministic" latency both for up and down links.
- Down link:
 - 2.56 Gb/s, FEC12
 - E-links outputs:
 - Up to 16
 - Data rates : 80/160/320 Mb/s
 - E-link clocks outputs:
 - Up to 28
 - Clock frequencies: 40/80/160/320/640/1280 MHz
 - Phase aligned clocks 4 channels
 - 50 ps resolution
 - Clock frequencies: 40/80/160/320/640/1280 MHz
- Up link:
 - 5.12 Gb/s or 10.24 Gb/s, FEC5 or FEC12
 - E-Links inputs:
 - Up to 28
 - Data rates 160 /320 / 640 / 1280 Mb/s
- Power dissipation:
 - Target: ≤ 500 mW @ 5.12 Gb/s
 - Target: ≤ 750 mW @ 10.24 Gb/s
- Compact package
- Radiation tolerance:
 - 200 Mrad
 - SEU robust

Agenda

- IpGBT architecture
- Architecture and performance of (selected) blocks
- Design status
- Package / PCB

lpGBT: Block Diagram (simplified)

FEE 2018, Jouvence, Canada

szymon.kulis@cern.ch

Foreword: Transmission line, Equalization and Pre-Emphasis

- Bandwidth of transition lines used in HEP is limited because of material budget constrains
- Both pre-emphasis and Equalization are attempts to restore the baseband signal spectrum
- Pre-emphasis (done at the transmitter):
 - Tries to generate a wave shape with an "exaggerated" spectral contents at the frequencies that are most attenuated by the channel [typically the high frequencies]
 - No degradation of the SNR
- Equalization (done at the receiver):
 - Amplifies more the high frequency contents of the spectrum than the low frequency. It is an attempt to achieve a combined response of the channel and equalizer that will approach a channel that has no inter-symbol interference
 - Degradation of the SNR
- Because of the SNR degradation resulting from equalization, the best approach is to <u>combine pre-</u> <u>emphasis and equalization</u>:
 - Enhance the transmitted high frequency content rather than do all the high frequency peaking at the receiver side

lpGBT: Down link: Line receiver

lpGBT: Down link: Line receiver architecture (@2.56Gbps)

lpGBT: Down link: Eye Opening Monitor architecture

- Goal: Monitor the opening of the received data eye diagram and tune the equalizer's settings
- Provides an "eye diagram picture" by using a "signal-scan" approach
- The scan is performed across the time (x-axis) and across the amplitude (y-axis), yielding a "signal density" per point
 - The input signal [data] is compared with a reference voltage "V_{of}"
 - The comparator's result is sampled by the rising edge of a clock synchronous to the incoming data
 - The sampled result drives a ripple counter to accumulate statistics
 - The counter is enabled for a well defined period.

IpGBT: Down link: Eye Opening Monitor

- Y-axis:
 - 5 bit resistive DAC
 - 31 points, step = \sim 20 mV (covers from V_{DD}/2 up to V_{DD})
- X-axis:
 - Phase interpolator uses 5.12 GHz clock to generate in-phase I and quadrature Q clocks at 2.56GHz
 - 64 points, step = ~6.1 ps in typical

60

55

50

45

40 35

30 25

20

IpGBT: clocks manager

szymon.kulis@cern.ch

Low jitter PLL: architecture matters

- Two PLLs working at 2.5 GHz, same circuits (power dissipation, loop dynamic) except the VCO:
 - LC VCO
 - Ring oscillator VCO
- Pre/post-rad jitter (rms):
 - LC: 0.3 / 1.0 ps
 - RO: 5.6 / 22 ps
- 600 Mrad + Annealing:
 - LC: $\Delta f < 5\%$ (Passives set the frequency)
 - RO: ∆f < 40% (Actives set the frequency)

Low jitter PLL: architecture matters

- Heavy ion testing:
 - LET: 3.2 to 69.2 MeV.cm²/mg
- LC oscillator displays a significantly higher sensitivity than the ring oscillator!
 - Contrary to expectations!
- SEU Phase jumps (unlock):
 - Ring oscillator: both polarities
 - LC: Mainly positive
- Two-Photon Absorption (TPA) laser tests point to the VARACTOR as the main culprit!
 - Total cross section of the LC-oscillator is 4 10⁻⁵cm² from which 70% is contributed by the varactor area!

szymon.kulis@cern.ch

Low jitter PLL: topology matters

- A new design prototyped to test the hypothesis:
 - Smaller varactor area
 - Different frequency tuning topology:
 - Grounded vs floating well!

IpGBT: clocks manager

- Two modes of operation:
 - PLL
 - CDR
 - Locking with external reference
 - Reference-less locking (using data)

szymon.kulis@cern.ch

Generated clocks:

+ inverted clocks

+ triplicated clocks (A/B/C)

•

•

40MHz / 80MHz / 160MHz / 320MHz / 640MHz / 1.28GHz/ 2.56GHz/ 5.12GHz (In phase!)

lpGBT: Down link: eTx - eLink Driver

lpGBT: Down link: eTx - eLink Driver

• Specs

- Data rate: Up to 1.28 Gb/s
- Clock frequency: Up to 1.28 GHz
- Driving current: 1 to 4 mA in 0.5 mA steps
- Receiving end termination: 100 Ω
- Voltage amplitude : 200 mV to 800 mV (DIFF PP amplitude in 100 $\Omega)$
- Common mode voltage: 600 mV
- Pre-emphasis:
 - Driving current: 1 to 4 mA in 0.5 mA steps
 - Pulse width:
 - Self timed: 120 ps to 960 ps in steps of 120 ps
 - Clock timed: T _{bit} / 2
- Design driven by radiation tolerance considerations:
 - The circuit relies on having the resistors setting the current and not the transistors (Poly resistors are insensitive to TID)

IpGBT: Down link: eTx – Pre-Emphasis

FEE 2018, Jouvence, Canada

szymon.kulis@cern.ch

lpGBT: Up link: eRx - eLink Receiver

- Specs
 - Data rate: Up to 1.28 Gb/s
 - Optional termination: 100 Ω
 - Optional bias generator for AC coupled signals (VDD/2)
 - Common mode voltage range: 70 mV 1.13V
 - Differential input voltage :140mV 450mV
 - Passive equalizer:
 - Optimized for cables with bandwidths of 448, 299 and 224 MHz
 - Attenuates low frequency signals

- Simulation conditions:
 - 70 MHz channel
 - Data rate: 1.28 Gb/s
 - Signal amplitude: 200 mV
 - Process: TT, V_{DD} = 1.2 V, T = 25 °C

lpGBT: Up link: Phase Alignment

- The LpGBT is the clock source to the front-end modules;
 - All the clocks generated by the LpGBT are synchronous with the LHC machine clock; Thus the LpGBT "knows" exactly the frequency of the incoming data! A CDR circuit is thus not needed for each ePort.
- The phase of the incoming data signals is "unknown" in relation to the internal sampling clock!
- There are up to 28 eLink inputs (potentially) all with random phase offsets
- The solution:
 - "Measure" the phase offset of each eLink input
 - Delay individually each incoming bit stream to phase align it with the internal sampling clock

lpGBT: Up link: Phase aligner - architecture

Building blocks:

- Reference DLL tunes control voltage for delay elements
- "Open loop" delay lines for data channels

Three modes of operation:

- Automatic phase tracking tracks any phase drifts during operation
- Static phase selection requires the operator to select the proper phase (reduced power consumption)
- Training with learned static phase combines two above mentioned modes

lpGBT: Data encoding

lpGBT: Data encoding

- The LpGBT supports the following data rates:
 - Down link: 2.56 Gb/s
 - Up-link: 5.12 / 10.24 Gb/s
- In all cases data is transmitted as a frame composed of:
 - Header
 - The data field
 - A forward error correction field: FEC5 / FEC12
- The data field is scrambled to allow for CDR at no [additional] bandwidth penalty
- Efficiency = # data bits/# frame bits

	Down-link	Up-Link			
	2.56 Gb/s	5.12 Gb/s		10.24 Gb/s	
		FEC5	FEC12	FEC5	FEC12
Frame [bits]	64	128		256	
Header [bits]	4	2		2	
Data [bits]	36	116	102	232	204
FEC [bits]	24	10	24	20	48
Correction [bits]	12	5	12	10	24
Efficiency	56%	91%	80%	91%	80%

lpGBT: Up link: Serialzier

lpGBT: Up link: Serialzier

• The power per serialization level remains constant:

$$P_L = 10.24 \; GHz \times P_0$$

• The serializer power is:

$$P = 10 \times 10.24 \ GHz \times P_0$$

Ten levels are needed to go from 40 MHz to 10.24 GHz

Although this architecture requires "twice" as much FFs (1023) as a simple shift register based serializer (512), it only requires 10/257 = 3.9% of the power consumption!!!

- Since the clock frequency increases with the serialization level, it is possible to optimize the speed-power at each level (Not possible for the simple shift register)
- The LpGBT does not use the last "resampling" stage at 10.24 GHz.
 - At the output of the last MUX the signal is already at 10.24 Gb/s (Double data rate)
 - Low jitter requires thus the last MUX to be fast and the 5.12 GHz clock to have "perfect" duty-cycle

lpGBT: Up link: Line Driver

IpGBT: Up link: Line Driver Topology

lpGBT: Up link: Line driver simulations (@5.12Gbps)

IpGBT: Analog and other peripherals

lpGBT: Other features/blocks

- 28 multi mode deserializers:
 - Data rates: 160Mbps, 320Mbps, 640Mbps, 1280Mbps
- 16 multi mode serializers:
 - Data rates: 80Mbps, 160Mbps, 320Mbps
- 28 independent frequency programmable eLink clocks
 - Frequency: 40MHz 1.28GHz
 - Two phases: 0 and 180 deg
- 4 independent phase/frequency programmable clocks:
 - Frequency: 40 MHz 1.28GHz
 - Phase: 50ps resolution
- 3 independent I2C master channels
- 16 PIO
 - Configurable pull up/down
- Watchdog
- SEU calibrator
- Process monitors (ring oscillators)
- Test pattern generators and checkers
- Configuration memory (eFuses)
 - ... ~450 8-bit registers

- 10 bit ADC
 - 8 channels (single ended or differential)
 - Voltage amplifier (x1 .. x32)
 - Sampling rate up to ~ 1MSps
- 12 bit voltage DAC
- 8 bit current DAC
 - can be attached to any analog input
 - range: 0-1mA (8bit)
- Temperature sensor
- Power on reset generator
- Brown out detector
 - Programmable levels : 0.7, 0.75, ... 1.1V

IpGBT: Status

All blocks ready

Blocks	Blocks	
10 Gb/s line driver	ePort Rx DLL	
2.5 Gb/s line receiver	ePort Rx Delay Lines	
HS LVT ELT Library	ePort TX	
CML Library	ePort Clk	
I/O Library	IC Channel	
Bandgap	I2C Master	
Power On Reset	I2C Slave	
10-bit SAR ADC	Frame Alignment	
8-bit ADC	Lock Control, PLL	
Temperature Sensor	Lock Control, CDR	
Programmable Current	Auto Reset	
5/10 Gb/s Serializer	Power Up FSM	
Deserializer	Watchdog	
PLL/CDR	Timeout	
CML Divider by 2	Scrambler	
Eye Scan	FEC Codec	
Loopback Multiplexer	Self Test BERT Tx	
Fine Phase Shifter	Descrambler	
Coarse Phase Shifter	Frame Deinterleaver	
ePort Deserializer	Self Test BERT Rx	

Chip integration in progress

- Integration of high speed blocks in the full custom macro
- Top level PNR : advanced (almost DRC and LVS clean)
- Whole chip timing and power verification

lpGBT IR drop

- Package is designed and ready for manufacturing
- Test system advanced

szymon.kulis@cern.ch

Backup slides

IpGBT: Analog peripherals

• 10 bit ADC

- Core: fully differential SAR
- 8 channels (single ended or differential)
- Voltage amplifier (x1 .. x32)
- Sampling rate up to ~ 1MSps (limited by the control channel)
- Monitoring of internal signals (like VDD)
- 12 bit voltage DAC
- 8 bit current DAC
 - can be attached to any analog input
 - range: 0-1mA (8bit)
- Temperature sensor

IpGBT: Package

- Small Footprint BGA package:
 - Size: 9 mm x 9 mm x 1.25 mm
 - Fine Pitch: 0.5 mm
 - Pin count: 289 (17 x 17)
- Designed by STATS ChipPAC
- Routing of high speed signals optimized and simulated
 - Very small loss @ 10GHz
 - models used for line driver simulations
- Status: ready for production

IpGBT: Test Board and test firmware

PCB

- 2 High Count FMC connectors
 - Access to ALL signals (79x2 differential, 4xHigh speed, 42 CMOS, 10 Analog)
 - Compatible with VC707
- Low jitter PLL for timing reference
- Software configurable LDO's with current monitoring
- Full custom socked already produced
- Status: final routing and simulation of high speed nets

Firmware

- IP Bus based
- High speed part already tested
- Slow control interfaces ready (I2C)

LpGBT Project Schedule

• Q2 2018:

- Currently working towards the ASIC tapeout
 - MPW 2018 June
- Package procurement and engineering completed
- Test system currently under development
- Q4 2018
 - Prototypes available (~300 ASICs)
- Q4 2018 Q3 2019:
 - Prototype functional testing
 - Radiation qualification
 - Production testing development
- Q4 2019:
 - Engineering run
- Q3 2020
 - Engineering ASICs (~40k) available to the users
- Q3 2021:
 - Production completed (~100k ASICs)