Performance of a digital-SiPM readout chip.

Inge Diehl, Karsten Hansen, Christian Reckleben, Yuan Yao

DESY-FEC, Hamburg, Germany

11th Front-End Electronics Meeting Jouvence, 20. May – 25. May 2018

Readout concept: hybrid approach

- ultra-thin sensor + fast readout ASIC
- sensor with small bulk resistor fast recharging
- low over-bias voltage (3.3-V mosfets)
- pixel-wise readout digital signal (no analog sum)
- high fill factor
- active quenching & recharging circuitry (AQRC)
- adjustable recharge start/hold-time (pile-up rejection)
- masking of noisy pixels
- hit counting
- wired-OR trigger

1st application:

particle tracking

Readout concept: macro pixel

prototype

macro pixel sensor (4x4 mm²) with handle wafer ASIC (2x2 mm²) on top 130-nm GF 8M1P CMOS

30-µm SAC solder spheres by using the laser-assisted jetting technique

- 16-by-16 pixel unit, 50-µm pitch
- interleaved row-wise 16-to-1 multiplexing
- 12-bit TDC (5-bit fine, 7-bit coarse)
- validation logic with comparators
 - adjustable thresholds
 - row reference: 1 ... >4 pixel
 - column reference: 1 ... >2 rows
- 21-bit bunch counter
- serialized time stamp / validation flag / frame number
- controller
 - clock division & distribution
 - status control register
- ≤ 3.3-MHz bunch clock scheme
- ≤ 450 MHz fast clock for MUX & TDC
- sustained data throughput @ 3 MHz
 - fast LVDS links
 - 816-Mbps hit data
 - 102-Mbps timing data

Readout concept: detector system

DAQ system: status

- board design and assembly ready
- FPGA programming in progress
- DAQ system available soon
- testboard with plug-in modules

plug-in module with prototype

testboard

DAQ system: beamline setup

- measurement of charged particles
- 2 prototypes on top of each other
- coincidence measurements
- rejection of dark events

Test setup: prototype

test setup at the moment

- lab instruments:
 - pattern generator, oscilloscope, data-timing generator, power supply
- 1 testboard with plug-in modules
- 2 output streams:
 - hit data
 - timing data (valid bit, TDC out, frame number)
- ASIC-behavior test independently of the sensor possible by using a test input
- prototype performance tests only with dark events

blug-in module with prototype

ASIC behaves as expected

verification of timing characteristics, validation logic, in-pixel hit counting and data processing

Results prototype: hit data

dark-count rate as function of the sensor-bias voltage

- record time: ~12.5 ms
- 1-hit counting per frame (3 MHz-frame rate)

600 x 10⁵ cps 120 2.6 500 100 400 80 Dark-count rate (Hz/μm²) 10 12 14 Dark-count rate (kHz) red sample 300 60 200 40 100 20 0 0 35.7 35.9 36.1 36.3 36.5 36.7 36.9 37.1 35.7 35.9 36.1 36.3 36.5 36.7 36.9 37.1 V_{bias} (V) V_{bias} (V)

dark-count rate per pixel

dark-count rate per area

Results prototype: timing data

- time window: 333 µs = 1000 frames @ 3 MHz
- V_{bias} = 36.5 V

Results prototype: validation-logic performance

dark-count rate with consideration of valid bit

- record time: ~12.5 ms (~38000 frames @ 3 MHz)
- 1-hit counting per frame
- V_{bias} = 36.5 V

validation thresholds:

row: 2, col: 1

row: 3, col: 1

- DCR can be significantly reduced (compare: DCR w/o validation = 180 kHz)
- crosstalk problematic shown

Results prototype: *TDC performance*

histogram of the TDC values

- record time: ~12.5 ms (~38000 frames @ 3 MHz)
- V_{bias} = 36.5 V
- '0' suppression by consideration the valid bit
- mean peak of TDC values at the beginning
 - probability higher by enabling all pixel
 - for 1 pixel enabled it is nearly equal distributed

Results prototype: *fine TDC performance*

Distribution of the fine TDC output values for random dark events

in good agreement with the fine-TDC DNL

•

- determined by using the test input
- max. DNL error: +0.61/-0.57 LSB

Test setup: ASIC - separate test circuits

additional performance tests

TC testboard

- lab instruments: pattern generator, oscilloscope, data-timing generator, power supply
- 1 testboard with 1 ASIC sample
- test of separate circuits:
 - 1 TDC
 - 1 LVDS transceiver

Results test circuits: *time-to-digital converter*

requirements

- 3-MHz bunch clock
 - \rightarrow 408-MHz reference clock
- timing resolution <90 ps

working principle

- delay lock loop (fine TDC)
 - 32 delay elements
 - ~77-ps timing resolution
 - 32-to-5 bit encoder
- ripple counter (coarse TDC)

bunch clock

frame reset

coarse TDC

timing data

trigger

read

reference clock

internal half clock

 \rightarrow time stamp: 1st hit

Inge Diehl DESY-FEC| FEE Meeting Jouvence 21.5.2018 | Page 14

DES

Results test circuits: time-to-digital converter

Results test circuits: time-to-digital converter

408-MHz reference clock

Inge Diehl DESY-FEC| FEE Meeting Jouvence 21.5.2018 | Page 16

Results test circuits: LVDS transceiver

Results test circuits: LVDS transceiver

. 🖵 🌱

Summary

- readout concept and detector system presented
- successfully prototype assembly with 30-µm solder spheres at 50-µm pitch
- functionality of sensor-ASIC prototype tested
 - dark-count rate evaluated versus bias voltage
 - hit detection and time stamping of first hit in macro pixel demonstrated at 3-MHz frame rate
 - basic performance of validation logic using random dark events
 - good agreement of fine-TDC DNL determined by dark image histogram and test input
- 12-bit TDC fulfills the targeted linearity requirements up to 3.3-MHz frame rate
- bit-error rate remains below 10⁻⁹ up to 1.6 Gbps: link reduction by a factor of 2 is possible
- next steps:
 - test with DAQ system
 - test with particles
- outlook:
 - improve TDC
 - sensor with improved dark-count rate
 - design transfer into new technology necessary

Thank you!

