MAPS applications: X-ray and bio imaging

Maciej Kachel

PICSEL group

Université de Strasbourg, IPHC, CNRS - Strasbourg, France maciej.kachel@iphc.cnrs.fr

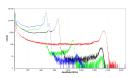
Front-End Electronics May 23, 2018

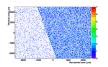
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bio-imaging

MAPS for low energy X-ray applications

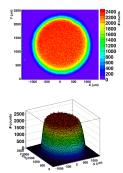
Conclusions


Introduction - Non-HEP applications of MAPS at IPHC


MAPS have been there for some time already, but

- Applications mainly in HEP thanks to:
 - Low material budget
 - Small pixel size
 - High signal/noise

• Depletion needed for some applications was not available until recently


X-ray applications

Proton beam profile CYRCé - IPHC

500

Bio-imaging: MAPSSIC project

Molecular Neuroimaging on freely Moving Rats a project by IMNC (Orsay), CPPM (Marseille), CERMEP (Lyon), NeuroPSI (Orsay)

Project goals:

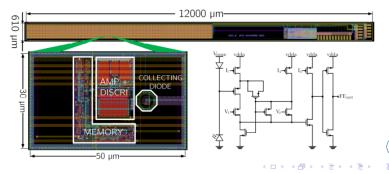
- Study molecular processes and behaviour at the same time on freely-moving rats
- Anaesthesia affects neural and vascular response and has effects on multiple physiological processes
- Imaging with radiotracers ¹⁸F, ¹¹C

Previous approach - PIXSIC

- 10 passive pixels on silicon (200 \times 500 μ m²)
- ullet Connected to readout chip (PICPUS) (long \sim 15 mm lines)
- μC transmits the data by wireless communication

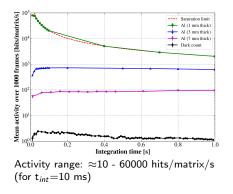
Proof of concept, but drawbacks:

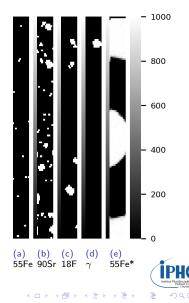
- Low signal to noise ratio
- Sensitive to annihilation gammas \Rightarrow detector 200 μ m thick


(日)

Bio-imaging: IMIC sensor

New sensor - IMIC (Imageur Moléculaire Intra-Cérébral)

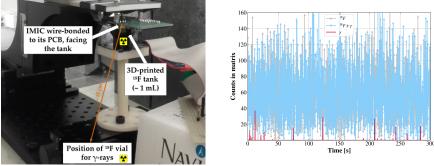

- Designed in 180 nm CMOS Image Sensor technology
- Size : 610 \times 12800 $\mu \mathrm{m}^2$
- Matrix of 16 x 128 pixels
- Pitch: 30 x 50 μ m²
- Fabricated on a high resistivity 18 μm thick epitaxial layer \Rightarrow low efficiency of gamma collection (annihilation photons)
- Pixel design based on ALPIDE front-end with 1bit memory at the output
- ullet Rolling shutter readout, and 16 ${
 ightarrow}1$ serialization
- Low power requirement



IMIC lab characterization

IMIC controlled by the $\mu\mathrm{C}$

- Power dissipated: 161 μ W
- Irradiated with different sources
- Integration time studies performed

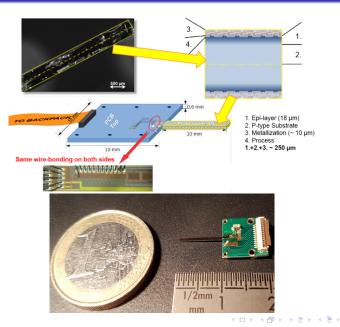

Bio-imaging ○○○●○ MAPS for low energy X-ray applications

Conclusions

IMIC sensitivity measurements with ¹⁸F

 $^{18}\mathrm{F}$ source: positron emitter + annihilation photons of 511 keV

- Produced at CYRCÉ cyclotron (IPHC)
- T1/2=109.7 min
- Tank with low activity close to the sensor: positron emitter
- $\bullet\,$ Vial with high activity (100 MBq) 15 cm away from sensor: annihilation photons emitter


Experiment illustrates the small sensitivity of IMIC to $\gamma\text{-rays}$ with respect to $\beta+$

(日) (同) (日) (日)

MAPS for low energy X-ray applications

IMIC Module development

Bio-imaging

MAPS for low energy X-ray applications

Conclusions

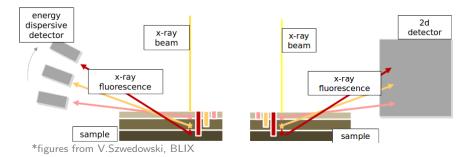
MAPS for low energy X-ray applications

	CCDs	MAPS	SOI	Hybrids
Counting single photons	No	Yes	Yes	Yes
Energy Range	Wide	Limited	Wide	Detector
Noise	Lowest(cooling)	Low	Low	Medium
Cost	High	Low	?	High
Counting Rate	Limited	Moderate	?	High

The PICSEL group has two main application goals in the low energy X-ray domain:

- X-ray imaging at the synchrotron source
- Fluorescence measurements (SF-GEXRF, EDXRF)

<ロト <回ト < 注ト < 注ト

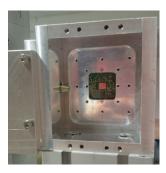


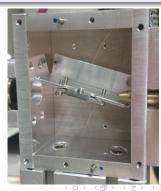
Bio-imaging

Conclusions

Scan Free Grazing Emission X-ray Fluorescence

We have started to work with "Berlin Laboratory for innovative X-ray Technologies" (BLIX) to provide an X-ray sensor for their applications.


(日)、

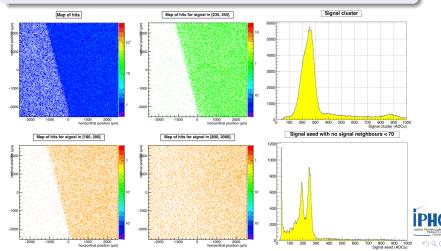

Scan Free Grazing Emission X-ray Fluorescence - first tests

Measurement set-up

The SF-GEXRF set-up was simplified:

- No vacuum
- Short sample-detector distance
- Flat irradiation angles possible
- Since the large detection surface was needed (low X-ray flux), we have use one of the old sensors Mimosa 18 with an active area \approx 1 cm².

Bio-imaging

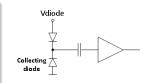

MAPS for low energy X-ray applications

Conclusions

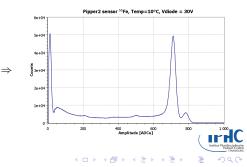
Scan Free Grazing Emission X-ray Fluorescence - first results

Measurements with Mimosa 18

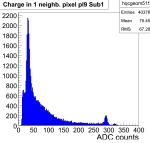
- Although the sensor is "undepleted", we can still see the good results but only for a fraction of the pixels
- $\bullet\,$ Sample Cr-Sc multilayer at an angle of $14^\circ\,$


Bio-imaging

Conclusions


Low energy X-ray fluorescence with depleted MAPS

Obtaining 'full' depletion throughout the sensor

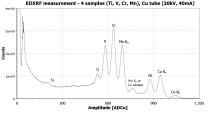

- Fabricate sensor on high-resistivity wafer (Cz, FZ)
- $\bullet\,$ Thinning to \approx 50 $\mu{\rm m}$
- $\bullet\,$ Back side processing: Ion implantation and laser activation $\Rightarrow\,$ entrance window
- Biasing the collecting diode from the front side

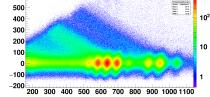
Depleted Pipper2

Undepleted Mimosa18

Bio-imaging

MAPS for low energy X-ray applications


Conclusions

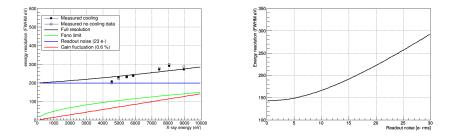

Low energy X-ray fluorescence with depleted MAPS

EDXRF Measurements with 4 samples of Ti, V, Cr, Mn

- X-ray lamp with Cu target
- Nickel used for shielding
- $\bullet\,$ Si line seen $\to\,$ internal fluorescence peak

(日) (同) (日) (日)

- Energy resolution for fluorescence peaks < 250 eV
- Most of the clusters are single pixels



Neighbour charge vs seed charge

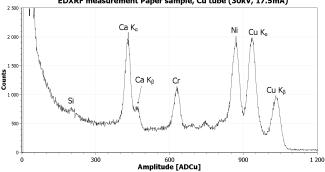
Bio-imaging

Conclusions

Energy resolution - Where does it come from?

- Readout noise due to a big collecting diode (6 μm diameter), to go below 200 eV \Rightarrow RO noise < 17 e $^-$ rms
- \bullet Gain fluctuation of 0.6% at 5.9 keV \Rightarrow FWHM 228 eV \rightarrow 242 eV
- Aiming for room temperature applicatons

(日) (同) (日) (日)


MAPS for low energy X-ray applications 00000000000

Low energy X-ray fluorescence with depleted MAPS

Unknown" paper sample

- NDT of paper quality Application idea from B. Norlin et al. "Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence", 2018 JINST 13 C01021
- Same X-ray setup as before
- Cr from the ink

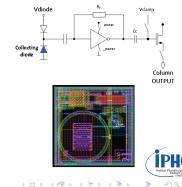
EDXRF measurement Paper sample, Cu tube (30kV, 17.5mA)

(日) (同) (日) (日)

Bio-imaging

Conclusions

Low energy X-ray imaging at the synchrotron source

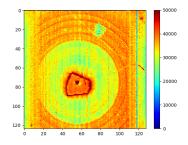

Requirements

- X-Ray Energy Range [few 100 eV 5 keV] with 100% QE
- Counting Dynamic [1-10⁷] ph/pix/s
- High Spatial Resolution (pixel pitch pprox 20 μ m)

First prototype M22SX

- Designed in image sensor 0.18 μm tech.
- 128 x 256 pixels with 22 $\mu \rm{m}$ pitch
- Collecting diode AC coupled to the amplifier
- Discriminator with 2 thresholds \rightarrow energy window
- Counting photons outside of the matrix

F and	-		
		and it	
			I.



Low energy X-ray imaging at the synchrotron source II

Measurements of M22SX at SOLEIL with Detectors group

- Hermes beam line, Scanning Transmission X-ray Microscope station
- Setup put under vacuum.
- Post processed Mimosa22SX, back side illuminated, vdiode = 40V

Airy pattern of the zone plate at 1.2 keV can be seen Sensor was damaged with direct beam before this measurement

	Bio-imaging 00000	MAPS for low energy X-ray applications	Conclusions
Conclusions			

Different applications (apart from HEP) exist where MAPS may be attractive

- Bio imaging in-vivo
- Low energy X-ray domain: XRF, counting
- Proton beam monitoring

Benefits of MAPS

- Bio-imaging:
 - ${\scriptstyle \bullet}\,$ Thin sensitive layer \Rightarrow transparency to background
 - Low power dissipation
- X-ray related applications
 - Small pixels
 - $\bullet \ \ {\sf Depletion} \Rightarrow {\sf quantum efficiency}$
- General
 - High S/N
 - Low cost

(日)、

Thank you for your attention

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?