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This is an experimental discussion; 
I don’t have answers, just try to give perspective 

♦ Standard candles 
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♦ Summary.

♦ Pragmatic, th.-free approach & its limitation - the “what have learnt” 
reduction problem. 

♦ Why things are naturally-speaking worse ? From LHC-data to relaxion-th..  

♦ Observationally-based: a special moment in HEP, the logarithmic crisis.

(tiny encouragement: relaxion and the edge of the log scale …)

(              )



pragmatic approach #1: th.-free search strategy
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♦ Right now @ the LHC we are searching in model indep’ manner…
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♦ Right now @ the LHC we are searching in model indep’ manner…

p p

Not true: we filter ~1010 Hz of  data down to 103 Hz (because it’s boring …) 

We mostly throw away everything that is soft; what if soft is everything?

Hofman & Maldacena (08); Georgi (07); 
Cai, Cheng, Medina & Terning (09);Wolf, Dremin & Kittel (95); Strassler & Zurek (06) 

Feynman - showering as self similar process                                      conformal hidden sector

p p



Pragmatic #2: th.-free approach to future exp.
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How to compare different possibilities?

Energy ? Luminosity ? Precision ? 

FCC



Pragmatic #3: just compare amount of data
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♦ Number of different type of bits per exp’:

# of 
bits LHC NA62 SHiP FCChh ILC SARAF

Ps/es/ 
POT “1016” 1018 1020 “1018” 1022

Kaon 
Produced 1014 1016 smaller 0

B’s 
Produced    1012-14 108 0 1016 ? smaller 0

Higgses 
        S/B

105            

10-3 0 0    109           

10-4 ?
  105            

100,-1 0

However, comparing # of protons to # of (clean) Higgsses is insane …



pragmatic approach #4: machine learning, 
automization will improve our large-data-searches
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♦ Machine learning (ML) can potentially significantly boost the field. 

SRITP Weizmann (17)

♦ In what sense (from experts): 

Brehmer, Cranmer, Kling & Plehn (16)

E. Gross: Jets, improving detector simulation …

K. Cranmer: Jets, Higgs-EFT, https://indico.physics.lbl.gov/indico/event/546/, Berkeley.

S. Bressler: (not necessarily related to ML, but linked to above theme)
“generating signal hypotheses from the data - a data focused paradigm”

http://inspirehep.net/author/profile/Brehmer%2C%20Johann?recid=1504220&ln=en
https://indico.physics.lbl.gov/indico/event/546/timetable/#all.detailed


Two thoughts on “pragmatism”

pragmatic approach #1: th.-free search strategy
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♦ Right now @ the LHC we are searching in model indep’ manner…

p p

Not true: we filter ~1010 Hz of  data down to 103 Hz (because it’s boring …) 

We mostly throw away everything that is soft; what if soft is everything?

Hofman & Maldacena (08); Georgi (07); 
Cai, Cheng, Medina & Terning (09);Wolf, Dremin & Kittel (95); Strassler & Zurek (06) 

Feynman - showering as self similar process                                      conformal hidden sector

p p
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♦ At present I don’t see a phase transition.
But, it might be too early.

♦ Generically, there is no attempt to deal with the following problem:
What do we learn if there is a null result ?!

Understanding the potential impact of large operation is a must and 
requires some level of reductionism. 

??



Two thoughts on “pragmatism”
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p p
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??

Projected/Current

Decay 2� Limit Produc- Comments

Mode on Br(Fi) tion

Fi 7+8 [14] TeV Mode

{µµ}{µµ} 1 · 10�5 (5 · 10�3) [?] G CMS [337], 2mµ < ma < 2m⌧ (CMS [377] ma < 5 GeV)

{ee}{ee} limit unclear [?] W , G reinterpretation of [225, 287] needed

{µµ}X 1 [?] G CMS, [377], 2mµ < ma < 5 GeV

{µµ} E/T 0.03 [?] W Theory study [52, 53], §1.3.8 and Appendix B; our study, §16

{µµ}{µµ} E/T 1 · 10�5 (5 · 10�3) [?] G CMS [337], 2mµ < ma < 2m⌧ (CMS [377] ma < 5 GeV)

however, see §17 for important details

{ee}{ee} E/T limit unclear [?] W , G reinterpretation of [225, 287] needed

{⌧⌧}{µµ} (3 � 7) · 10�4 [?] G This work, see §6.2

{��}{��} 0.01 [?] G ATLAS [322], ma < 400 MeV

{��} E/T ?[?] no studies

{gg}{gg} > 1 [0.7] W boosted Wh [265], ma < 30 GeV

{bb̄}{bb̄} 0.7 [0.2] W boosted Wh [265], ma ⇠ 15 GeV

TABLE XX: Estimates for sensitivity of certain searches for collimated pairs of objects; collimation is denoted by curly brackets. See Table

XII for notation and text for more details. An asterisk indicates that 300 fb�1 was assumed; otherwise all estimates for 14 TeV assume 100

fb�1.
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Projected/Current h !   0 ! f̄f + E/T h !   ! f̄
1

f
1

+ f̄
2

f
2

+ E/T

Decay 2� Limit Produc- Limit on Limit on Comments

Mode on Br(Fi) tion Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM) Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM)

Fi 7+8 [14] TeV Mode 7+8 [14] TeV 7+8 [14] TeV

(bb̄) E/T
> 1

Z 0.05
> 1

0.1
> 1 Our study, §18

[ 0.2⇤ ] [ 4⇤ ] [ 2⇤ ] Theory study [51], §1.3.10

(⌧⌧) E/T
> 1

Z 0.15
> 1

0.28
> 1 Our study, §19

[ > 1⇤ ] [ > 1⇤ ] [ > 1⇤] ] Theory study [51], §1.3.10

`` E/T
0.07

G 0.30
0.2

0.51
0.1 Recast of expt. result [374, 375], §15

[ ? ] [ ? ] [ ? ]

```` E/T
5 · 10�4

G, V –
–

0.09
0.005 Recast of expt. result [367], §14

[ ? ] [ – ] [ ? ]

TABLE XVII: As in Table XII, estimates for various processes h !   0 (middle column) and h !   (right column), where  0 is invisible

and  !  0+f̄f via an intermediate (possibly o↵-shell) vector boson, which couples to fermions proportionally to electric charges. The limits

for b̄b and ⌧⌧ assume an intermediate resonance (indicated with parentheses), while the 2`, 4` limits do not, making the limits artificially

weak. For h !   (right-most columns), there are four fermions in the final state; we assume here that the limits obtained for ff̄ + E/T are

not much changed by the presence of the two additional fermions. An asterisk denotes that all 14 TeV estimates shown require 300 fb�1

of data.
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Projected/Current

Decay 2� Limit Produc- Limit on Comments

Mode on Br(Fi) tion Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM)

Fi 7+8 [14] TeV Mode 7+8 [14] TeV

jjjj
> 1

W 0.25
> 1

[ 0.1⇤ ] [ 0.4⇤ ] Theory study [218, 267], §7

````
4 · 10�5

G 0.09
4 · 10�4 Recast of expt. result [176, 339], §11

[ ? ] [ ? ]

jjµµ
0.002 � 0.008

G 0.15
0.01 � 0.06 Our study, §5

[ (5 � 20) · 10�4 ] [ 0.003 � 0.01 ] Our study, §5

bb̄µµ
(2 � 7) · 10�4

G 0.015
0.01 � 0.05 Our study, §5

[ (0.6 � 2) · 10�4 ] [ 0.003 � 0.01 ] Our study, §5

TABLE XIV: As in Table XII, estimates for various processes in h ! ZDZD if mZD > 2mb and

couplings are proportional to electric charges. ` = e, µ and all numbers represent the sum of

processes involving e and µ; j represents all jets except b quarks. An asterisk indicates that 300

fb�1 was assumed; otherwise all estimates for 14 TeV assume 100 fb�1.

electric charge. This is the case if decays occur via kinetic ��ZD mixing, and if mZD ⌧ mZ so

that photon-Z mixing is unimportant (see Fig. 13 in §1.3.5), but also gives the qualitatively

correct picture for more general dark vector scenarios.

We first treat the h ! ZDZD decay, see Table XIV. Not surprisingly, the search for

h ! (`+`�)(`+`�), which allows full reconstruction at high resolution, is the most powerful.

The published data on four-lepton events used in the Higgs search and in Z(⇤)Z(⇤) studies

puts tremendous constraints on this decay, already, according to our reinterpretation of the

published data, reaching Br(h ! ZDZD) < 4 ⇥ 10�4. It is important to improve on the

constraints we found on this well-motivated model; specifically, our reinterpretation did not

allow for an optimal constraint, since it does not make full use of the three available mass

resonances.

Limits on Br(h ! ZDZD) from dilepton plus jets searches are probably in the few times

10�2 range, see §5. As the table indicates, our studies suggest that jjµ+µ� and bb̄µ+µ� would
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Projected/Current quarks allowed quarks suppressed Comments

Decay 2� Limit Produc- Limit on Limit on

Mode on Br(Fi) tion Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM) Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM)

Fi 7+8 [14] TeV Mode 7+8 [14] TeV 7+8 [14] TeV

bb̄bb̄
0.7

W 0.8
0.9

0
– Recast of expt. result [274], §3

[ 0.2 ] [ 0.2 ] [ – ] Theory study [191, 265], §3

bb̄⌧⌧
> 1

V 0.1
> 1

0
–

[ 0.15 ] [ 1 ] [ – ] Theory study [276], §4

bb̄µµ
(2 � 7) · 10�4

G 3 · 10�4

0.5 � 1
0

– Our study, §5
[ (0.6 � 2) · 10�4 ] [ 0.2 � 0.8 ] [ – ] Our study, §5

⌧⌧⌧⌧
0.2 � 0.4

G 0.005
40 � 80

1
0.2 � 0.4 Recast of expt. result [296, 298], §6

[ ? ] [ ? ] [ ? ]

⌧⌧µµ
(3 � 7) · 10�4

G 3 · 10�5

10 � 20
0.007

0.04 � 0.1 Our study, §6
[ ? ] [ ? ] [ ? ]

µµµµ
1 · 10�4

G 1 · 10�7

1000
1 · 10�5

10 Recast of expt. result [176, 339], §11

[ ? ] [ ? ] [ ? ]

TABLE XII: Estimates for current or projected limits on various processes in h ! aa, if a couplings are proportional to masses, and either

a ! quarks is allowed as in an NMSSM-type model (center columns) or a ! quarks is suppressed relative to a ! leptons (right columns).

If no relevant estimate is known, we indicate this with a “?”. The source of each estimate is listed in the “Comments” column. Production

modes: G for gg ! h, V for vector boson fusion, W, Z for Wh and Zh. For 14 TeV, estimates require 100 fb�1. See §20.1 for additional

information and cautionary remarks.
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Projected/Current Br(a ! ��) ⇡ 0.004 Br(a ! ��) ⇡ 0.04 Comments

Decay 2� Limit Produc- Limit on Limit on

Mode on Br(Fi) tion Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM) Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM)

Fi 7+8 [14] TeV Mode 7+8 [14] TeV 7+8 [14] TeV

jjjj
> 1

W 0.99
> 1

0.92
> 1

[ 0.1⇤ ] [ 0.1⇤ ] [ 0.1⇤ ] Theory study [218, 267], §7

��jj
0.04

W 0.008
5

0.08
0.5

[ 0.01⇤ ] [ 1⇤ ] [ 0.1⇤ ] Theory study [310], §8

����
2 · 10�4

G 1 · 10�5

20
0.001

0.2 Our study, §9
[ 3 · 10�5⇤ ] [ 1⇤ ] [ 0.03⇤ ] Theory study [309], §9

TABLE XIII: As in Table XII, estimates for various processes in h ! aa if a decays only to SM gauge bosons through loops. The central

columns show the case where the couplings are generated by initially degenerate SU(5) multiplets; the right columns show the case where

the a ! �� rate is enhanced by a factor of 10. An asterisk denotes that all 14 TeV estimates shown require 300 fb�1 of data.
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Projected/Current

Decay 2� Limit Produc- Limit on Comments

Mode on Br(Fi) tion Br(Fi)

Br(non-SM)

�
�SM

· Br(non-SM)

Fi 7+8 [14] TeV Mode 7+8 [14] TeV

ZZD ! ````
4 · 10�5

G 0.02
0.002 Recast of expt. result [176, 177], §10

[ ? ] [ ? ]

Za ! ``µµ
4 · 10�5

G 2 · 10�5

2 Recast of expt. result [176, 177], §10

Br(a ! b¯b) ⇠ 0.9 [ ? ] [ ? ]

Za ! ``µµ
4 · 10�5

G 2 · 10�4

0.2 Recast of expt. result [176, 177], §10

Br(a ! b¯b) = 0 [ ? ] [ ? ]

TABLE XV: As in Table XII, estimates for all-leptonic processes in h ! ZZD and h ! Za ! ````; other processes were not studied. For ZD

we assume couplings are proportional to electric charges; for a we assume all couplings are proportional to masses, and either that a ! bb̄

is dominant or highly suppressed (as in certain Type III 2HDM+S models described in §1.3.2). Here ` = e, µ and all numbers represent the

sum of processes involving e and µ. An asterisk indicates that 300 fb�1 was assumed; otherwise all estimates for 14 TeV assume 100 fb�1.
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♦ At present I don’t see a phase transition.
But, it might be too early.

♦ Generically, there is no attempt to deal with:
What do we learn if there is a negative result ?!

Understanding the potential impact of large operation is a must and 
requires some level of reductionism. 



Some guidance: Implications of
conflict with observations 

(moving to log scale)



Masses of right handed neutrinos 10-9 – 1015 GeV 
Mass of Dark Matter particle 10-31 – 1020 GeV 
Mass of new particles required for baryogenesis 10-2 - 1015 GeV 
Scale of inflation probably (could be) very high, but at largely 
unknown … 

The Standard Model (SM) is incomplete

The 21st century frustration:  
we know that new physics exists but we don’t know where …

New particle and forces must exist: 



Masses of right handed neutrinos 10-9 – 1015 GeV 
Mass of Dark Matter particle 10-31 – 1020 GeV 
Mass of new particles required for baryogenesis 10-2 - 1015 GeV 
Scale of inflation probably (could be) very high, but at largely 
unknown … 

Search for motivated new physics with no 
preferred energy scale - the logarithmic crisis

New particle and forces must exist: 

       ….  lost among the orders of magnitude ….  
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High intensity frontier:  
  MeV-GeV region 

High Energy frontier:  
TeV region 

Below the Higgs mass... but where? 

kinetic mixing of a dark photon-ordinary  photon versus mass of dark photon 
 

G. Lanfranchi                                         Search for New Physics at the Intensity Frontier                                                           14 
Weizmann colloquium, Nov (17)
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High intensity frontier:  
  MeV-GeV region 

High Energy frontier:  
TeV region 

Below the Higgs mass... but where? 

kinetic mixing of a dark photon-ordinary  photon versus mass of dark photon 
 

G. Lanfranchi                                         Search for New Physics at the Intensity Frontier                                                           14 
Weizmann colloquium, Nov (17)

HEP region is not so special !!



Theoryfull strategy, status of naturalness
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♦ Few slides to demystify naturalness.

♦ Why things are possibly actually worse conceptually ?  
The relaxion & the naturalness logarithmic crisis. 

♦ Despite results why is it embarrassingly still the best 
motivation for new physics in HEP.
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independent, as it should [9], and explicitly given by2

m2
= M2

h +

1

(4⇡v)2


6M2

t (M
2
h � 4M2

t )B0(Mh;Mt,Mt) + 24M2
t A0(Mt) +

+(M4
h � 4M2

hM
2
W + 12M4

W )B0(Mh;MW ,MW )� 2(M2
h + 6M2

W )A0(MW ) +

+

1

2

�
M4

h � 4M2
hM

2
Z + 12M4

Z

�
B0(Mh;MZ ,MZ)� (M2

h + 6M2
Z)A0(MZ) +

+

9

2

M4
hB0(Mh;Mh,Mh)� 3M2

hA0(Mh)

�
(5)

= M2
h

✓
1 + 0.133 + �SM

m ln

µ̄2

M2
t

◆
(6)

where

A0(M) = M2
(1� ln

M2

µ̄2
), B0(p;M,M) = �

Z 1

0

ln

M2 � x(1� x)p2

µ̄2
dx (7)

are the finite parts of the usual Passarino-Veltman functions and Mt is the top quark mass,
MW is the W mass, MZ is the Z mass. This correction reproduces the well known one-loop
SM RGE equation for m2

dm2

d ln µ̄2
= �SM

m m2, �SM
m =

3

4

4y2t + 8�� 3g2 � g2Y
(4⇡)2

. (8)

In view of the log divergence, the finite part of the correction to m2 is scheme-dependent; it
depends on the value of µ̄ and on its definition (e.g. when choosing MS instead then MS).3

From eq. (6) we see that the MS Higgs mass parameter equals m(µ̄ = Mt) = 132.8GeV.
Renormalizing it at large energies [12] we find m(µ̄ = MPl) = 141.1GeV. As a consequence
the SM satisfies ‘finite naturalness’, for the observed values of its parameters. Fig. 1 shows
contour-levels of the fine-tuning � ⌘ m2

(Mt)/M
2
h � 1: we see that � ⇡ 0.13 is small for the

observed values of the SM parameters, while a Higgs mass ⇡ 10 times lighter than the top
would have led to a ‘finite naturalness’ problem within the SM.

We now explore the implications for ‘finite naturalness’ of new physics motivated by ob-
servations.

3 Finite naturalness, neutrino masses and leptogenesis

The observation of neutrino masses [13], presumably of Majorana type, points to new physics
at some scale possibly as high as v2/m⌫ ⇠ 10

14
GeV. At tree level, neutrino masses can be

mediated by 3 types of new particles, called type I, II and III see-saw. We will study the
corrections to the Higgs mass parameter in these scenarios.

2 Equivalent expressions for the one loop SM correction to the pole Higgs mass have already been presented
in various papers, including appendix C of [10], eq. (3.14) of [11], appendix A of [8]. These computations
are here used (maybe for the first time) to extract the fundamental SM parameter m from data with one-loop
accuracy; the result with two-loop accuracy will appear in [9].

3In general, the constant terms here and in the following computations depend on the regulator as well as
an on the renormalisation scheme; we will use MS. On the other hand, the log-enhanced terms are univocally
defined and correspond to the coefficients of the usual renormalisation group equations.
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♦ Without new-dynamical scale the fine tuning problem problem is ill define;
     => Higgs naturalness is a UV problem.

Higgs RGE, bottom up is natural: 

105 109 1013

140

160

180

200

220

mH [GeV]

µ[GeV]

H
H

Giudice (13)  

The Higgs hierarchy/naturalness/fine-tuning problem

low  
scale

high  
scale

small change



The Higgs hierarchy/naturalness/fine-tuning problem
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♦ Without new-dynamical scale the fine tuning problem problem is ill define;
     => Higgs naturalness is a UV problem.

Higgs finite additive correction: 
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Figure 1: The SM satisfies ‘finite naturalness’ for the observed values of its parameters (small
ellipse), while a large fine-tuning would be present for a lighter Higgs.

3.1 Type-I see saw

Type-I see-saw contains heavy right-handed neutrinos N with mass M and Yukawa couplings
�N NLH to lepton doublets L such that at low energy one obtains Majorana neutrino masses
m⌫ = �2

NhHi2/M [13]. The one-loop correction to the squared Higgs mass is

�m2
=

4�2
N

(4⇡)2
M2

(ln

M2

µ̄2
� 1) (9)

where the RGE scale µ̄ can be identified with the cut-off of the theory, possibly the Planck
scale. Indeed the log-enhanced term in eq. (9) means that, above M , heavy right-handed
neutrinos produce the following term

dm2

d ln µ̄2
=

4�2
N

(4⇡)2
M2

+ �SM
m m2 (10)

in the RGE for the Higgs mass term squared parameter m2. Therefore the condition of finite
naturaless, �m2

h
<⇠M2

h ⇥� (where � is an order-one fine-tuning factor), is satisfied by type-I
models if right-handed neutrinos are lighter than [14]

M <⇠Mh

✓
�

16⇡2Mh

m⌫

◆1/3

⇡ 0.7 10

7
GeV ⇥ 3

p
� (Type-I see-saw) (11)

having assumed m⌫ = (�m2
atm)

1/2 ⇡ 0.05 eV. This upper bound on M is hardly compatible
with thermal leptogenesis, that needs M >⇠ 2 10

9
GeV, unless right-handed neutrinos domi-

nated the energy density of the universe [15] (such that leptogenesis can be successful for
M >⇠ 2 · 107 GeV) and/or in presence of resonant enhancements.

5

Add particle w coupling �N & mass M )
H

H

Farinaa, Duccio Pappadopulo & Strumia (14)
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7
GeV ⇥ 3

p
� (Type-I see-saw) (11)

having assumed m⌫ = (�m2
atm)

1/2 ⇡ 0.05 eV. This upper bound on M is hardly compatible
with thermal leptogenesis, that needs M >⇠ 2 10

9
GeV, unless right-handed neutrinos domi-

nated the energy density of the universe [15] (such that leptogenesis can be successful for
M >⇠ 2 · 107 GeV) and/or in presence of resonant enhancements.
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♦ Without new-dynamical scale the fine tuning problem problem is ill define;
     => Higgs naturalness is a UV problem.

Higgs finite additive correction: 
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Figure 1: The SM satisfies ‘finite naturalness’ for the observed values of its parameters (small
ellipse), while a large fine-tuning would be present for a lighter Higgs.

3.1 Type-I see saw

Type-I see-saw contains heavy right-handed neutrinos N with mass M and Yukawa couplings
�N NLH to lepton doublets L such that at low energy one obtains Majorana neutrino masses
m⌫ = �2

NhHi2/M [13]. The one-loop correction to the squared Higgs mass is

�m2
=

4�2
N

(4⇡)2
M2

(ln

M2

µ̄2
� 1) (9)

where the RGE scale µ̄ can be identified with the cut-off of the theory, possibly the Planck
scale. Indeed the log-enhanced term in eq. (9) means that, above M , heavy right-handed
neutrinos produce the following term

dm2

d ln µ̄2
=

4�2
N

(4⇡)2
M2

+ �SM
m m2 (10)

in the RGE for the Higgs mass term squared parameter m2. Therefore the condition of finite
naturaless, �m2

h
<⇠M2

h ⇥� (where � is an order-one fine-tuning factor), is satisfied by type-I
models if right-handed neutrinos are lighter than [14]
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1/2 ⇡ 0.05 eV. This upper bound on M is hardly compatible
with thermal leptogenesis, that needs M >⇠ 2 10

9
GeV, unless right-handed neutrinos domi-

nated the energy density of the universe [15] (such that leptogenesis can be successful for
M >⇠ 2 · 107 GeV) and/or in presence of resonant enhancements.
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♦ Without new-dynamical scale the fine tuning problem problem is ill define;
     => Higgs naturalness is a UV problem.

Higgs finite additive correction: 
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Figure 1: The SM satisfies ‘finite naturalness’ for the observed values of its parameters (small
ellipse), while a large fine-tuning would be present for a lighter Higgs.

3.1 Type-I see saw

Type-I see-saw contains heavy right-handed neutrinos N with mass M and Yukawa couplings
�N NLH to lepton doublets L such that at low energy one obtains Majorana neutrino masses
m⌫ = �2

NhHi2/M [13]. The one-loop correction to the squared Higgs mass is

�m2
=

4�2
N

(4⇡)2
M2

(ln

M2

µ̄2
� 1) (9)

where the RGE scale µ̄ can be identified with the cut-off of the theory, possibly the Planck
scale. Indeed the log-enhanced term in eq. (9) means that, above M , heavy right-handed
neutrinos produce the following term

dm2

d ln µ̄2
=

4�2
N

(4⇡)2
M2

+ �SM
m m2 (10)

in the RGE for the Higgs mass term squared parameter m2. Therefore the condition of finite
naturaless, �m2

h
<⇠M2

h ⇥� (where � is an order-one fine-tuning factor), is satisfied by type-I
models if right-handed neutrinos are lighter than [14]
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1/2 ⇡ 0.05 eV. This upper bound on M is hardly compatible
with thermal leptogenesis, that needs M >⇠ 2 10

9
GeV, unless right-handed neutrinos domi-

nated the energy density of the universe [15] (such that leptogenesis can be successful for
M >⇠ 2 · 107 GeV) and/or in presence of resonant enhancements.
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♦ Without new-dynamical scale the fine tuning problem problem is ill define;
     => Higgs naturalness is a UV problem.
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set by UV physics. 

What if we change it  
just by factor of 2?



The Higgs hierarchy/naturalness/fine-tuning problem
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♦ Without new-dynamical scale the fine tuning problem problem is ill define;
     => Higgs naturalness is a UV problem.
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M ⇠ 105 TeV, �N ⇠ 1

The Higgs mass pushed to M => inconsistent \w data.



Naturalness gives us motivation to look     
for    TeV new particles
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The LHC depression - “naturalness is dead”



However:

Two reasons for why this logic is not 
bullet proof:

(i) for the high-energy colliders 
(ii) new & welcome lepton-colliders



First: naturalness is not black & white measure
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Beyond the 
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First: naturalness is not black & white measure



Graham, Kaplan & Rajendran (15)

Second: relaxion - naturalness => TeV new physics /
♦ A dynamical solution/amelioration of the Higgs fine-tuning problem: 

(i) Add a scalar (relaxion) Higgs dependent mass:                             .
�
⇤2 � g2�2

�
H†H

µ2(�)

� roles till µ2
changes sign ) hHi 6= 0 ) stops rolling.(ii)

V (�)

�

�

 U(1) toy model, symmetric phase

77

V (H) = �µ2H†H + �(H†H)2

For further use, consider the following toy model,  of a global U(1) sym’: 

µ2 < 0 ) trivial case:

H ! ei✓H(invariant under:                ,          ) � > 0

V (H)

H

Both Lagrangian & Higgs VEV (ground state) respect the symmetry,             .       

♦

hHi = 0

µ2(�) = 0



Focus shifts from Higgs to relaxion dynamics 

♦ Can we even search for relaxion? Yes! How?

♦ Different pheno’, no partners. (stops/t’, gauginos/KK Z’s …) 

♦ In most (but not all) cases, the relaxion is a                         
pseudo-Nambu-Goldstone-Boson that (due to CP violation) mixes w the Higgs. 

Flacke, Frugiuele, Fuchs, Gupta & GP; Choi & Im (16)                    

♦ It implies that we can simplify its coupling to two 
parameters, mass & Higgs-mixing angle, with:

sin ✓ . m

v
. 10% , m . v2

f
. 30GeV ⇥ f

TeV
. (v = 174GeV)



The relaxion parameter space, first analogy w axion

“Physical”  
region: 

 on or below  
diagonal

– 3–

rapid scanning of the axion mass range at or below the DFSZ

limit. The region of the microwave cavity experiments is shown

in detail in Fig. 2.
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Figure 1: Exclusion region in mass vs. axion-photon
coupling (mA, gAγ) for various experiments. The limit
set by globular cluster Horizontal Branch Stars (“HB
Stars”) is shown for Ref. 2.

III.2. Telescope search for eV axions: For axions of mass

greater than about 10−1 eV, their cosmological abundance is

no longer dominated by vacuum misalignment or string ra-

diation mechanisms, but rather by thermal production. Their

contribution to the critical density is small, Ω ∼ 0.01 (mA/eV).

However, the spontaneous-decay lifetime of axions, τ (A →
2γ) ∼ 1025sec(mA/eV)−5 while irrelevant for µeV axions, is

short enough to afford a powerful constraint on such thermally

produced axions in the eV range, by looking for a quasi-

monochromatic photon line from galactic clusters. This line,

June 25, 1998 13:06

PDG (98) 

(back to log scale }-;)



The relaxion parameter space, overview plot

sin ✓ . m

v
. 10% , m . v2

f
. 30GeV ⇥ f

TeV
.(                                    )

Bad news: log scale naturalness searches; 
Good news: it seems that hep/colliders can probe physical region!

Frugiuele, Fuchs, GP, Schlaffer, in preparation.
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Zooming in on the region accessible to colliders

Lepton machines with large # of Z/H probe sizable region! 
Same holds for HL-LHC & SHiP.

Frugiuele, Fuchs, GP, Schlaffer, in preparation.



One slide on standard candles 



Several SM coupling have not yet observed directly

♦ A conservative approach would be to attempt and measure 
these, in particular within the Higgs sector.

Fujii et al (2017)Pr
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Figure 5: Illustration of the Higgs boson coupling uncertainties from fits in the EFT formal-
ism, as presented in Table 1, and comparison of these projections to the results of model-
dependent estimates for HL-LHC uncertainties presented by the ATLAS collaboration [23].
Earlier projections for HL-LHC are summarized in [28].
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♦ Lighter generation couplings required to establish the SM
flavor picture are not shown.



Summary

33

♦ HEP was special => energy (E) frontier guaranteed discoveries.

♦ Reaction => discard theory - pragmatically move to signature 

based strategy - limited when planning to the future (what learnt?).

♦ Relaxion => undermine the energy frontier however motivates            

for Higgs precision frontier via relaxion-Higgs mixing. 

♦ Naturalness => possibly best motivation for E-frontier.

♦ Observationally-driven approach => log-crisis.



Backups

34



Relaxion’s basic structure

35

Choi, Kim & Yun (2014) Choi & Im; Kaplan & Rattazzi; Gupta, Komargodski, GP & Ubaldi  (15) 

♦ QFT consistent constructions are of the form: 

(M ⇠ ⇤)

.

♦ It implies that generically:

(i) CP violation is spontaneously induced (problematic for axion-relaxion models); 

(ii) Higgs-relaxion mixing is induced:

V (�, H) = H†H[⇤

2�M2
cos(�/f)]+r⇤2M2

cos(�/f)+H†H ˜M2
cos(n�/f)

V 0
(�⇤, v) = 0 ) r⇤4

sin(�⇤/f) ' v2n ˜M2
sin(n�⇤/f) ) �⇤ is generic.

V
mix

⇠ nvM̃2

f
sin(n�⇤/f)⇥H�

phys

' r⇤4

vf
sin(�⇤/f)⇥H�

phys

.

(GKR: g ⇠ M/f)}



36

Relaxion beams, relaxion flavor
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Flacke, Frugiuele, Fuchs, Gupta & GP (16). 



Back to Original Relaxion Proposal
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�
⇤

2 � g2�2

�
H†H ) �

relaxed

⇠ ⇤

g ; (assume :⇤ � v)

V (�) = r2g2⇤2�2 � vnM4�n
X cos(�/f) (expect : MX < 4⇡v; 4 � n > 0)

V 0(�) = 0 ) �
relaxed

f &
�

⇤
4⇡v

�4 ⇥ r2
h
g .

�
4⇡v
⇤

�4 ⇥ ⇤
fr2

i

⇤ � TeV ) h�i � f required to be physical.

Gupta, Komargodski, GP & Ubaldi (15)

Graham, Kaplan & Rajendran (15)



The (compact) Relaxion Proposal

38

Gupta, Komargodski, GP & Ubaldi (15)

⇤ � TeV ) h�i � f required to be physical.

However, finite dim’ EFT: pNGB => compact manifold. 

Again:                                              lead to same physics.   � ! �+ 2n⇡f (n 2 Z)

This is a redundant description of the theory <=> discrete gauge 
sym’ (no example \w local operator that breaks it) 

As long as relaxion potential is controlled by global internal sym’ 
EFT locality seems to implies compactness of pNGB manifold: 

h�i . f .



Brief: Comments on the Relaxion Proposal
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Gupta, Komargodski, GP & Ubaldi (15)

Note: axion realisations also suffer from inflated n => irrelevant 
operators => tiny backreaction/fine tuning/monstrous beta function.  

Hence upon the identification:

axion$ � , U(1) $ PQ ,

yuHf3
⇡ or y2uH

†Hf2
⇡ $ mLmNyycH

†H ,

expect similar bound to hold:

⇤ . 10TeV (yycv
2mLmN )

1
4

4⇡v

�
1

4⇡r

� 1
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�

n
10

� 1
4 .
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we expect a similar bound to hold:
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The hierarchion: 
relaxion-familon-Nelson-Barr model

40

Davidi, Gupta, GP, Redigolo & Shalit (17)



Solving the CP problem - relaxion-Nelson-Barr

41

♦ The problem: relaxion spontaneously lead to order one CP Breaking.

♦ Nelson-Barr models solves the strong CP problem based on:

(i) CP being spontaneously broken. 

(ii)  Structure such the O(1) CP phase induce the O(1) CKM phase                                           
                               (unlike lore a potential advantage compare to axion models …)

If relaxion can be integrated to Nelson-Barr’s structure => perfect marriage:

(i) Nelson-Barr reminder; (ii) Relaxion-Nelson-Barr. 



Nelson-Barr (NB @ tree level)

42

7

FN messengers. Notice that the couplings of both
�N and �⇤

N with the fermionic bilinear  dc collec-
tively break the U(1)N explicitly. As we will show,
since h⇡N |�i ⇡ 1/3N , this breaking will generate the
rolling potential in Eq. (1) for the relaxion �.

The vector-like mass µ is a technically natural pa-
rameter whose scale can be set independently from
the decay constant f if  and  c carry opposite
charges under U(1)m. In general, we can also al-
low  and  c to carry di↵erent charges under the
FN U(1)m so that

µ = yµ


�m

⇤ 

�|qµ|�1

�m , (27)

and Eq. (26) remains invariant under U(1)m. In this
second case, the scale of µ is related to f times a
parametric suppression depending on the FN U(1)m
charge qµ = [ ]+ [ c]. The ABJ anomaly with QCD
in Eq. (25) gets a new contributions from  and  c:
n
tot

= n
SM

+ 1/2([ ]� [ c]). Don’t understand this
equation. Why is it not n

tot

= n
SM

+ [ ] + [ c]? -
OD In the Appendix we discuss another charge as-
signment where n

tot

= 0 and the vector-like mass of
the  ’s is predicted in terms of the FN charges, like
the ones of the other SM quarks. comment on tuning
- DR

Setting �N to its VEV, we can define
p
2" =

f/⇤ < 1 and

(BN )i = "
|d i |
 f

⇣

Y  
i + Ỹ  

i

⌘

ei|d
 
i |✓m , (28)

where Y  
i = y i e

i✓N and Ỹ  
i = ỹ i e

�i✓N . In a UV
complete FN setup, one expects ⇤ ⇡ ⇤d and " ⇡
"d since  and QH carry the same gauge quantum
numbers. The phase ei✓m can be rotated away using
a chiral rotation acting on the  ’s and the SM quarks.
In both cases the U(1)m charges are arranged such
that the ABJ anomaly with QCD is exactly zero so
that a ✓

QCD

is not generated. Erased (stays as a
LATEXcomment) the explicit transformation of BN as
it is not needed because we stated that the phase can
be rotated away... - OD

After this rotation, the only non-zero phase in BN

is the one associated with �N , and the 4 ⇥ 4 mass
matrix of the down quarks at tree level is

M4⇥4

d =

 

(µ)
1⇥1

(BN )
1⇥3

(0)
3⇥1

�

vY d
�

3⇥3

!

, (29)

where the zero of the 3 ⇥ 1 block is enforced by the
Z
2

-symmetry, forbidding QiH 
c. Even though the

above mass matrix is complex, we find,

Arg(detM7⇥7

q ) = Arg(detMu)Arg(µ · det(vY d))

= 0 . (30)

Integrating out the vector-like fermions we find the
e↵ective 3⇥ 3 mass matrix squared M e↵

d M e↵†
d of the

down sector in the SM: Changed the indices such that
they will make sense (didn’t use Transpose because
it makes the notation messy). Also applied Einstein
notation for uniformity. - OD

h

Meff
d Meff†

d

i

ij
⇠ v2Y d

ikY
d
jk � v2Y d

ikBkB
⇤
` Y

d
j`

µ2 +BnB⇤
n

, (31)

where we have used µ2 + BnB
⇤
n � v2Y d

ikY
d
jk for all i

and j. Any phase in the unitary matrix V L
d , which

diagonalizes the matrix in Eq. (31), would lead to a
phase, �CKM , in the CKM matrix, VCKM = V L†

u V L
d .

The phase vanishes if in flavor space one can factorize
out the phase of ~B = ~R ei✓, where ~R is real. To
avoid the above condition and obtain �CKM ⇠ O(1)
one must have at least one pair (i, j) such that I
agree that I didn’t understand the condition. Are
the indices correct? Are i 6= j? - OD

✏
|d i |
d y i ⇠ ✏

|d i |
d ỹ i ⇠ ✏

|d i |
d y j ⇠ ✏

|d i |
d ỹ j . (32)

For the success of our model, it is also essential
that the second term in Eq. (31) does not spoil the
hierarchical structure of the first. Estimating how
both terms parametrically scale if " ⇠ "d, we get
Replaced bc with dc

3

. - OD

Y d
ikY

d
jk ⇠ YikBkB

⇤
` Y

d
j`

µ2 +BnB⇤
n

⇠ "
|[Qi]+[Qj ]+2[dc

3

]|
d , (33)

where we replaced the summations on the flavor in-
dices with the dominant term in the sum. Eq. (33)
shows that the second term preserves the parametric
structure of the first one. Changed the order of ex-
planation. - OD In the Appendix we explicitly show
two examples in which both of the - OD conditions
in Eqs. (32) and (33) are fulfilled.

At tree-level, sector (26) solves the strong CP prob-
lem while generating �CKM ⇠ O(1). Let us now dis-
cuss the radiative corrections along the lines of [44].
Integrating out the fermions at 1-loop, we get the
e↵ective potential for �N and the SM Higgs I stop
here!I am still checking the rest! - DR

VCW (�N ) = ⇢
5

�⇤
N�NH†H

+(⇢
1

m2�2

N + ⇢
2

�4

N + ⇢
3

�2

N�⇤
N�N + ⇢

4

�2

NH†H + h.c.)

7

FN messengers. Notice that the couplings of both
�N and �⇤

N with the fermionic bilinear  dc collec-
tively break the U(1)N explicitly. As we will show,
since h⇡N |�i ⇡ 1/3N , this breaking will generate the
rolling potential in Eq. (1) for the relaxion �.

The vector-like mass µ is a technically natural pa-
rameter whose scale can be set independently from
the decay constant f if  and  c carry opposite
charges under U(1)m. In general, we can also al-
low  and  c to carry di↵erent charges under the
FN U(1)m so that

µ = yµ


�m

⇤ 

�|qµ|�1

�m , (27)

and Eq. (26) remains invariant under U(1)m. In this
second case, the scale of µ is related to f times a
parametric suppression depending on the FN U(1)m
charge qµ = [ ]+ [ c]. The ABJ anomaly with QCD
in Eq. (25) gets a new contributions from  and  c:
n
tot

= n
SM

+ 1/2([ ]� [ c]). Don’t understand this
equation. Why is it not n

tot

= n
SM

+ [ ] + [ c]? -
OD In the Appendix we discuss another charge as-
signment where n

tot

= 0 and the vector-like mass of
the  ’s is predicted in terms of the FN charges, like
the ones of the other SM quarks. comment on tuning
- DR

Setting �N to its VEV, we can define
p
2" =

f/⇤ < 1 and

(BN )i = "
|d i |
 f

⇣

Y  
i + Ỹ  

i

⌘

ei|d
 
i |✓m , (28)

where Y  
i = y i e

i✓N and Ỹ  
i = ỹ i e

�i✓N . In a UV
complete FN setup, one expects ⇤ ⇡ ⇤d and " ⇡
"d since  and QH carry the same gauge quantum
numbers. The phase ei✓m can be rotated away using
a chiral rotation acting on the  ’s and the SM quarks.
In both cases the U(1)m charges are arranged such
that the ABJ anomaly with QCD is exactly zero so
that a ✓

QCD

is not generated. Erased (stays as a
LATEXcomment) the explicit transformation of BN as
it is not needed because we stated that the phase can
be rotated away... - OD

After this rotation, the only non-zero phase in BN

is the one associated with �N , and the 4 ⇥ 4 mass
matrix of the down quarks at tree level is

M4⇥4

d =

 

(µ)
1⇥1

(BN )
1⇥3

(0)
3⇥1

�

vY d
�

3⇥3

!

, (29)

where the zero of the 3 ⇥ 1 block is enforced by the
Z
2

-symmetry, forbidding QiH 
c. Even though the

above mass matrix is complex, we find,

Arg(detM7⇥7

q ) = Arg(detMu)Arg(µ · det(vY d))

= 0 . (30)

Integrating out the vector-like fermions we find the
e↵ective 3⇥ 3 mass matrix squared M e↵

d M e↵†
d of the

down sector in the SM: Changed the indices such that
they will make sense (didn’t use Transpose because
it makes the notation messy). Also applied Einstein
notation for uniformity. - OD

h

Meff
d Meff†

d

i

ij
⇠ v2Y d

ikY
d
jk � v2Y d

ikBkB
⇤
` Y

d
j`

µ2 +BnB⇤
n

, (31)

where we have used µ2 + BnB
⇤
n � v2Y d

ikY
d
jk for all i

and j. Any phase in the unitary matrix V L
d , which

diagonalizes the matrix in Eq. (31), would lead to a
phase, �CKM , in the CKM matrix, VCKM = V L†

u V L
d .

The phase vanishes if in flavor space one can factorize
out the phase of ~B = ~R ei✓, where ~R is real. To
avoid the above condition and obtain �CKM ⇠ O(1)
one must have at least one pair (i, j) such that I
agree that I didn’t understand the condition. Are
the indices correct? Are i 6= j? - OD

✏
|d i |
d y i ⇠ ✏

|d i |
d ỹ i ⇠ ✏

|d i |
d y j ⇠ ✏

|d i |
d ỹ j . (32)

For the success of our model, it is also essential
that the second term in Eq. (31) does not spoil the
hierarchical structure of the first. Estimating how
both terms parametrically scale if " ⇠ "d, we get
Replaced bc with dc

3

. - OD

Y d
ikY

d
jk ⇠ YikBkB

⇤
` Y

d
j`

µ2 +BnB⇤
n

⇠ "
|[Qi]+[Qj ]+2[dc

3

]|
d , (33)

where we replaced the summations on the flavor in-
dices with the dominant term in the sum. Eq. (33)
shows that the second term preserves the parametric
structure of the first one. Changed the order of ex-
planation. - OD In the Appendix we explicitly show
two examples in which both of the - OD conditions
in Eqs. (32) and (33) are fulfilled.

At tree-level, sector (26) solves the strong CP prob-
lem while generating �CKM ⇠ O(1). Let us now dis-
cuss the radiative corrections along the lines of [44].
Integrating out the fermions at 1-loop, we get the
e↵ective potential for �N and the SM Higgs I stop
here!I am still checking the rest! - DR

VCW (�N ) = ⇢
5

�⇤
N�NH†H

+(⇢
1

m2�2

N + ⇢
2

�4

N + ⇢
3

�2

N�⇤
N�N + ⇢

4

�2

NH†H + h.c.)

real complex, relaxion the only source of CP breaking.

real

No strong CP phase.

Nelson; Barr (84)

O(1) CKM phase.

CKM: Integrating out heavy fermions, assuming                                       ,  

7

FN messengers. Notice that the couplings of both
�N and �⇤

N with the fermionic bilinear  dc collec-
tively break the U(1)N explicitly. As we will show,
since h⇡N |�i ⇡ 1/3N , this breaking will generate the
rolling potential in Eq. (1) for the relaxion �.

The vector-like mass µ is a technically natural pa-
rameter whose scale can be set independently from
the decay constant f if  and  c carry opposite
charges under U(1)m. In general, we can also al-
low  and  c to carry di↵erent charges under the
FN U(1)m so that

µ = yµ


�m

⇤ 

�|qµ|�1

�m , (27)

and Eq. (26) remains invariant under U(1)m. In this
second case, the scale of µ is related to f times a
parametric suppression depending on the FN U(1)m
charge qµ = [ ]+ [ c]. The ABJ anomaly with QCD
in Eq. (25) gets a new contributions from  and  c:
n
tot

= n
SM

+ 1/2([ ]� [ c]). Don’t understand this
equation. Why is it not n

tot

= n
SM

+ [ ] + [ c]? -
OD In the Appendix we discuss another charge as-
signment where n

tot

= 0 and the vector-like mass of
the  ’s is predicted in terms of the FN charges, like
the ones of the other SM quarks. comment on tuning
- DR

Setting �N to its VEV, we can define
p
2" =

f/⇤ < 1 and

(BN )i = "
|d i |
 f

⇣

Y  
i + Ỹ  

i

⌘

ei|d
 
i |✓m , (28)

where Y  
i = y i e

i✓N and Ỹ  
i = ỹ i e

�i✓N . In a UV
complete FN setup, one expects ⇤ ⇡ ⇤d and " ⇡
"d since  and QH carry the same gauge quantum
numbers. The phase ei✓m can be rotated away using
a chiral rotation acting on the  ’s and the SM quarks.
In both cases the U(1)m charges are arranged such
that the ABJ anomaly with QCD is exactly zero so
that a ✓

QCD

is not generated. Erased (stays as a
LATEXcomment) the explicit transformation of BN as
it is not needed because we stated that the phase can
be rotated away... - OD

After this rotation, the only non-zero phase in BN

is the one associated with �N , and the 4 ⇥ 4 mass
matrix of the down quarks at tree level is

M4⇥4

d =

 

(µ)
1⇥1

(BN )
1⇥3

(0)
3⇥1

�

vY d
�

3⇥3

!

, (29)

where the zero of the 3 ⇥ 1 block is enforced by the
Z
2

-symmetry, forbidding QiH 
c. Even though the

above mass matrix is complex, we find,

Arg(detM7⇥7

q ) = Arg(detMu)Arg(µ · det(vY d))

= 0 . (30)

Integrating out the vector-like fermions we find the
e↵ective 3⇥ 3 mass matrix squared M e↵

d M e↵†
d of the

down sector in the SM: Changed the indices such that
they will make sense (didn’t use Transpose because
it makes the notation messy). Also applied Einstein
notation for uniformity. - OD

h

Meff
d Meff†

d

i

ij
⇠ v2Y d

ikY
d
jk � v2Y d

ikBkB
⇤
` Y

d
j`

µ2 +BnB⇤
n

, (31)

where we have used µ2 + BnB
⇤
n � v2Y d

ikY
d
jk for all i

and j. Any phase in the unitary matrix V L
d , which

diagonalizes the matrix in Eq. (31), would lead to a
phase, �CKM , in the CKM matrix, VCKM = V L†

u V L
d .

The phase vanishes if in flavor space one can factorize
out the phase of ~B = ~R ei✓, where ~R is real. To
avoid the above condition and obtain �CKM ⇠ O(1)
one must have at least one pair (i, j) such that I
agree that I didn’t understand the condition. Are
the indices correct? Are i 6= j? - OD

✏
|d i |
d y i ⇠ ✏

|d i |
d ỹ i ⇠ ✏

|d i |
d y j ⇠ ✏

|d i |
d ỹ j . (32)

For the success of our model, it is also essential
that the second term in Eq. (31) does not spoil the
hierarchical structure of the first. Estimating how
both terms parametrically scale if " ⇠ "d, we get
Replaced bc with dc

3

. - OD

Y d
ikY

d
jk ⇠ YikBkB

⇤
` Y

d
j`

µ2 +BnB⇤
n

⇠ "
|[Qi]+[Qj ]+2[dc

3

]|
d , (33)

where we replaced the summations on the flavor in-
dices with the dominant term in the sum. Eq. (33)
shows that the second term preserves the parametric
structure of the first one. Changed the order of ex-
planation. - OD In the Appendix we explicitly show
two examples in which both of the - OD conditions
in Eqs. (32) and (33) are fulfilled.

At tree-level, sector (26) solves the strong CP prob-
lem while generating �CKM ⇠ O(1). Let us now dis-
cuss the radiative corrections along the lines of [44].
Integrating out the fermions at 1-loop, we get the
e↵ective potential for �N and the SM Higgs I stop
here!I am still checking the rest! - DR

VCW (�N ) = ⇢
5

�⇤
N�NH†H

+(⇢
1

m2�2

N + ⇢
2

�4

N + ⇢
3

�2

N�⇤
N�N + ⇢

4

�2

NH†H + h.c.)
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FN messengers. Notice that the couplings of both
�N and �⇤

N with the fermionic bilinear  dc collec-
tively break the U(1)N explicitly. As we will show,
since h⇡N |�i ⇡ 1/3N , this breaking will generate the
rolling potential in Eq. (1) for the relaxion �.

The vector-like mass µ is a technically natural pa-
rameter whose scale can be set independently from
the decay constant f if  and  c carry opposite
charges under U(1)m. In general, we can also al-
low  and  c to carry di↵erent charges under the
FN U(1)m so that

µ = yµ


�m

⇤ 

�|qµ|�1

�m , (27)

and Eq. (26) remains invariant under U(1)m. In this
second case, the scale of µ is related to f times a
parametric suppression depending on the FN U(1)m
charge qµ = [ ]+ [ c]. The ABJ anomaly with QCD
in Eq. (25) gets a new contributions from  and  c:
n
tot

= n
SM

+ 1/2([ ]� [ c]). Don’t understand this
equation. Why is it not n

tot

= n
SM

+ [ ] + [ c]? -
OD In the Appendix we discuss another charge as-
signment where n

tot

= 0 and the vector-like mass of
the  ’s is predicted in terms of the FN charges, like
the ones of the other SM quarks. comment on tuning
- DR

Setting �N to its VEV, we can define
p
2" =

f/⇤ < 1 and

(BN )i = "
|d i |
 f

⇣

Y  
i + Ỹ  

i

⌘

ei|d
 
i |✓m , (28)

where Y  
i = y i e

i✓N and Ỹ  
i = ỹ i e

�i✓N . In a UV
complete FN setup, one expects ⇤ ⇡ ⇤d and " ⇡
"d since  and QH carry the same gauge quantum
numbers. The phase ei✓m can be rotated away using
a chiral rotation acting on the  ’s and the SM quarks.
In both cases the U(1)m charges are arranged such
that the ABJ anomaly with QCD is exactly zero so
that a ✓

QCD

is not generated. Erased (stays as a
LATEXcomment) the explicit transformation of BN as
it is not needed because we stated that the phase can
be rotated away... - OD

After this rotation, the only non-zero phase in BN

is the one associated with �N , and the 4 ⇥ 4 mass
matrix of the down quarks at tree level is

M4⇥4

d =

 

(µ)
1⇥1

(BN )
1⇥3

(0)
3⇥1

�

vY d
�

3⇥3

!

, (29)

where the zero of the 3 ⇥ 1 block is enforced by the
Z
2

-symmetry, forbidding QiH 
c. Even though the

above mass matrix is complex, we find,

Arg(detM7⇥7

q ) = Arg(detMu)Arg(µ · det(vY d))

= 0 . (30)

Integrating out the vector-like fermions we find the
e↵ective 3⇥ 3 mass matrix squared M e↵

d M e↵†
d of the

down sector in the SM: Changed the indices such that
they will make sense (didn’t use Transpose because
it makes the notation messy). Also applied Einstein
notation for uniformity. - OD

h

Meff
d Meff†

d

i

ij
⇠ v2Y d

ikY
d
jk � v2Y d

ikBkB
⇤
` Y

d
j`

µ2 +BnB⇤
n

, (31)

where we have used µ2 + BnB
⇤
n � v2Y d

ikY
d
jk for all i

and j. Any phase in the unitary matrix V L
d , which

diagonalizes the matrix in Eq. (31), would lead to a
phase, �CKM , in the CKM matrix, VCKM = V L†

u V L
d .

The phase vanishes if in flavor space one can factorize
out the phase of ~B = ~R ei✓, where ~R is real. To
avoid the above condition and obtain �CKM ⇠ O(1)
one must have at least one pair (i, j) such that I
agree that I didn’t understand the condition. Are
the indices correct? Are i 6= j? - OD

✏
|d i |
d y i ⇠ ✏

|d i |
d ỹ i ⇠ ✏

|d i |
d y j ⇠ ✏

|d i |
d ỹ j . (32)

For the success of our model, it is also essential
that the second term in Eq. (31) does not spoil the
hierarchical structure of the first. Estimating how
both terms parametrically scale if " ⇠ "d, we get
Replaced bc with dc

3

. - OD

Y d
ikY

d
jk ⇠ YikBkB

⇤
` Y

d
j`

µ2 +BnB⇤
n

⇠ "
|[Qi]+[Qj ]+2[dc

3

]|
d , (33)

where we replaced the summations on the flavor in-
dices with the dominant term in the sum. Eq. (33)
shows that the second term preserves the parametric
structure of the first one. Changed the order of ex-
planation. - OD In the Appendix we explicitly show
two examples in which both of the - OD conditions
in Eqs. (32) and (33) are fulfilled.

At tree-level, sector (26) solves the strong CP prob-
lem while generating �CKM ⇠ O(1). Let us now dis-
cuss the radiative corrections along the lines of [44].
Integrating out the fermions at 1-loop, we get the
e↵ective potential for �N and the SM Higgs I stop
here!I am still checking the rest! - DR
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♦ Challenge - how to transmit relaxion's complex VEV to quark matrix:

Original model - Bi $ (g�+ g̃�⇤) dc .

Relaxion-NB - Bi $ (g�N + g̃�⇤N ) dc .

3

FIG. 1: Cartoon of the hierachion construction. The SM lepton sector LL in Eq. (14) is connected to the 0th site
through higher dimension operators à la Froggatt-Nielsen. On the same site the sterile neutrino sector Lbr

N in Eq. (16)
gives Majorana neutrino masses and the “backreaction” potential for the relaxion in Eq. (4). The quark sector LQ in
Eq. (23) can be also be connected à la Froggatt-Nielsen to the mth site where 0  m ⌧ N . A new vector-like fermion
Lroll

 in Eq. (26) is added to the mth site and connected via small portal couplings y i , ỹ i to the Nth site which gives
the rolling potential and the Nelson-Barr phase.

relations of the relaxion setup

@�V = 0 ) ⇤

⇤br
⇠

✓

F

f

◆

1/4

(6)

) sin
�
0

f
⇠ sin

�
0

F
⇠ O(1) , (7)

where we defined �
0

= h�i the point in field space
where the relaxion stops. An arbitrary constant can
always be added to the relaxion potential in order to
set to zero the cosmological constant at the end of
the rolling.

From Eq. (6) we see that a very large ratio of scales
between the UV cut-o↵ ⇤ and the backreaction scale
⇤
br

can be achieved if a very large ratio between
the two periodicities F/f is obtained. This trans-
lates in a very large hierarchy of charges between
the “rolling” sector and the “backreaction” sector as
first pointed out in [10]. One way to create such a
hierarchy of charges is the so called clockwork mecha-
nism [3, 4]. This introduces N+1 spontaneously bro-
ken abelian symmetries at di↵erent sites of a moose
diagram as shown in Fig. 1

V
clock

=
N
X

j=0

��m2|�j |2 + �|�j |4
�

. (8)

Assuming for simplicity all the masses and quartics
to be equal at every site, the decay constants of the
associated Goldstone bosons are equal to f = m/�.
The di↵erent sites are connected by ✏-suppressed op-
erators breaking explicitly N of the abelian symme-

tries

�V
clock

= �
N�1

X

j=0

⇣

✏�†
j�

3

j+1

+ c.c.
⌘

. (9)

Expanding all the scalars around their VEV’s

�j =
1p
2
(f + 'j)Uj , Uj = ei⇡j/f , (10)

and decoupling the radial modes 'j in the limit ✏ . 1
we get the potential for the Goldstone modes

�V
clock

= �✏f4

4

N�1

X

j=0

cos

✓

3⇡j+1

� ⇡j

f

◆

. (11)

This leaves a single massless Goldstone whose wave
function is exponentially peaked on the 0th site

� = c�(N)
N
X

j=0

1

3j
⇡j , (12)

where for N � 1 the normalization constant is
c�(N) ⇡ p

8/9 which take to be 1 in what follows.
The overlap between the massless eigenstate � and
the site j is h⇡j |�i ⇡ 1/3j . Notice that � non-linearly
realizes the spontaneously broken U(1)

clock

symme-
try:

U(1)
clock

: ⇡j ! ⇡j + 3jf↵ (13)

� ! �+ f↵ .

All the other pNGB’s get a mass m2

i ⇡ ✏f and are
stabilized at the origin. Introducing explicit breaking
of the global U(1)

clock

at the site j of the clockwork

�N ⇠ ⇢N exp

�
i�/3Nf

�

�N

Inducing a phase + rolling potential!



Relaxion-familon

44

3

FIG. 1: Cartoon of the hierachion construction. The SM lepton sector LL in Eq. (14) is connected to the 0th site
through higher dimension operators à la Froggatt-Nielsen. On the same site the sterile neutrino sector Lbr

N in Eq. (16)
gives Majorana neutrino masses and the “backreaction” potential for the relaxion in Eq. (4). The quark sector LQ in
Eq. (23) can be also be connected à la Froggatt-Nielsen to the mth site where 0  m ⌧ N . A new vector-like fermion
Lroll

 in Eq. (26) is added to the mth site and connected via small portal couplings y i , ỹ i to the Nth site which gives
the rolling potential and the Nelson-Barr phase.

relations of the relaxion setup

@�V = 0 ) ⇤

⇤br
⇠

✓

F

f

◆

1/4

(6)

) sin
�
0

f
⇠ sin

�
0

F
⇠ O(1) , (7)

where we defined �
0

= h�i the point in field space
where the relaxion stops. An arbitrary constant can
always be added to the relaxion potential in order to
set to zero the cosmological constant at the end of
the rolling.

From Eq. (6) we see that a very large ratio of scales
between the UV cut-o↵ ⇤ and the backreaction scale
⇤
br

can be achieved if a very large ratio between
the two periodicities F/f is obtained. This trans-
lates in a very large hierarchy of charges between
the “rolling” sector and the “backreaction” sector as
first pointed out in [10]. One way to create such a
hierarchy of charges is the so called clockwork mecha-
nism [3, 4]. This introduces N+1 spontaneously bro-
ken abelian symmetries at di↵erent sites of a moose
diagram as shown in Fig. 1

V
clock

=
N
X

j=0

��m2|�j |2 + �|�j |4
�

. (8)

Assuming for simplicity all the masses and quartics
to be equal at every site, the decay constants of the
associated Goldstone bosons are equal to f = m/�.
The di↵erent sites are connected by ✏-suppressed op-
erators breaking explicitly N of the abelian symme-

tries

�V
clock

= �
N�1

X

j=0

⇣

✏�†
j�

3

j+1

+ c.c.
⌘

. (9)

Expanding all the scalars around their VEV’s

�j =
1p
2
(f + 'j)Uj , Uj = ei⇡j/f , (10)

and decoupling the radial modes 'j in the limit ✏ . 1
we get the potential for the Goldstone modes

�V
clock

= �✏f4

4

N�1

X

j=0

cos

✓

3⇡j+1

� ⇡j

f

◆

. (11)

This leaves a single massless Goldstone whose wave
function is exponentially peaked on the 0th site

� = c�(N)
N
X

j=0

1

3j
⇡j , (12)

where for N � 1 the normalization constant is
c�(N) ⇡ p

8/9 which take to be 1 in what follows.
The overlap between the massless eigenstate � and
the site j is h⇡j |�i ⇡ 1/3j . Notice that � non-linearly
realizes the spontaneously broken U(1)

clock

symme-
try:

U(1)
clock

: ⇡j ! ⇡j + 3jf↵ (13)

� ! �+ f↵ .

All the other pNGB’s get a mass m2

i ⇡ ✏f and are
stabilized at the origin. Introducing explicit breaking
of the global U(1)

clock

at the site j of the clockwork

♦ U(1) preserving int’ on site 1st & m’th => quark+lepton hierarchies. 

♦ Traceless quark charges to avoid generating theta term. 

♦ Explicit breaking on lepton sector a la Gupta et al yield backreaction. 
. 

Hierarchion = Relaxion-familon-Nelson-Barr model of hierarchies



The main idea
Graham, Kaplan & Rajendran (15)



Relaxion’s physics
Graham, Kaplan & Rajendran (15)

♦ A dynamical solution/amelioration of the Higgs fine-tuning problem: 

(i) Add a scalar (relaxion) Higgs dependent mass:                             .
�
⇤2 � g2�2

�
H†H

µ2(�)

� roles till µ2
changes sign ) hHi 6= 0 ) stops rolling.(ii)

V (�)

�

�

 U(1) toy model, symmetric phase

77

V (H) = �µ2H†H + �(H†H)2

For further use, consider the following toy model,  of a global U(1) sym’: 

µ2 < 0 ) trivial case:

H ! ei✓H(invariant under:                ,          ) � > 0

V (H)

H

Both Lagrangian & Higgs VEV (ground state) respect the symmetry,             .       

♦

hHi = 0

µ2(�) = 0



Relaxion mechanism
Graham, Kaplan & Rajendran (15)

♦ A dynamical solution/amelioration of the Higgs fine-tuning problem: 

(i) Add a scalar (relaxion) Higgs dependent mass:                             .
�
⇤2 � g2�2

�
H†H

µ2(�)

(ii) � roles till µ2
flips sign) hHi 6= 0 ) backreaction stops � .

V (�)

�

�

µ2(�) = 0



Relaxion’s physics
Graham, Kaplan & Rajendran (15)

♦ A dynamical solution/amelioration of the Higgs fine-tuning problem: 
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Roughly ⇤/v . n1/4 ⇠ (fUV/fIR)
1/4 ⇠ 3

N
clock

/4 .

For v ⌧ ⇤ progress achieved.


