(Mis)guided advice towards facing the unknown

Gilad Perez

Weizmann

(1st) Meeting on the future of Experimental HEP post LHC (in particular in Israel)

Dec. 2017. Weizmann

This is an experimental discussion; I don't have answers, just try to give perspective

- Pragmatic, th.-free approach \& its limitation - the "what have learnt" reduction problem.
\checkmark Observationally-based: a special moment in HEP, the logarithmic crisis.
- Why things are naturally-speaking worse ? From LHC-data to relaxion-th..
(tiny encouragement: relaxion and the edge of the log scale ...)
$(\stackrel{\text { Standard candles }}{ })$

- Summary.

pragmatic approach \#I: th.-free search strategy

- Right now @ the LHC we are searching in model indep' manner...

pragmatic approach \#I: th.-free search strategy

- Right now @ the LHC we are searching in model indep' manner...

Not true: we filter $\sim 10^{10} \mathrm{~Hz}$ of data down to $10^{3} \mathrm{~Hz}$ (because it's boring ...)
We mostly throw away everything that is soft; what if soft is everything?

Feynman - showering as self similar process

Wolf, Dremin \& Kittel (95); Strassler \& Zurek (06)
conformal hidden sector

Hofman \& Maldacena (08); Georgi (07); Cai, Cheng, Medina \& Terning (09);

Pragmatic \#2: th.-free approach to future exp.
How to compare different possibilities?

Energy?

FCC

Luminosity?

Precision?

Pragmatic \#3: just compare amount of data

- Number of different type of bits per exp':

\# of bits	LHC	NA62	SHiP	FCChh	ILC	SARAF
Ps/es/ POT	$" 10{ }^{16}$ "	10^{18}	10^{20}	" 10^{18} "		10^{22}
Kaon Produced		10^{14}	10^{16}		smaller	0
$\begin{gathered} \text { B's } \\ \text { Produced } \end{gathered}$	10^{12-14}	10^{8}	0	10^{16} ?	smaller	0
$\begin{gathered} \text { Higgses } \\ S / B \end{gathered}$	$\begin{gathered} 10^{5} \\ 10^{-3} \end{gathered}$	0	0	$\begin{gathered} 10^{9} \\ 10^{-4} ? \end{gathered}$	$\begin{aligned} & 10^{5} \\ & 10^{0,-1} \end{aligned}$	0

However, comparing \# of protons to \# of (clean) Higgsses is insane ...

pragmatic approach \#4: machine learning, automization will improve our large-data-searches

- Machine learning (ML) can potentially significantly boost the field.

Hammers and Nails - Machine Leaming \& IEP

- In what sense (from experts):
K. Cranmer: Jets, Higgs-EFT, https://indico.physics.bl.gov/indico/event/546/, Berkeley.

Brehmer, Cranmer, Kling \& Plehn (16)
E. Gross: Jets, improving detector simulation ...
S. Bressler: (not necessarily related to ML, but linked to above theme) "generating signal hypotheses from the data - a data focused paradigm"

Two thoughts on "pragmatism"

- At present I don't see a phase transition. But, it might be too early.

\checkmark Generically, there is no attempt to deal with the following problem: What do we learn if there is a null result ?!

Understanding the potential impact of large operation is a must and requires some level of reductionism.

Two thoughts on "pragmatism"

Some guidance: Implications of conflict with observations (moving to log scale)

The Standard Model (SM) is incomplete

New particle and forces must exist:
Masses of right handed neutrinos $10^{-9}-10^{15} \mathrm{GeV}$
Mass of Dark Matter particle $10^{-31}-10^{20} \mathrm{GeV}$
Mass of new particles required for baryogenesis $10^{-2}-10^{15} \mathrm{GeV}$
Scale of inflation probably (could be) very high, but at largely unknown ...

The 21st century frustration:
we know that new physics exists but we don't know where ...

Search for motivated new physics with no preferred energy scale - the logarithmic crisis
kinetic mixing of a dark photon-ordinary photon versus mass of dark photon

G. Lanfranchi

Weizmann colloquium, Nov (17)

Search for New Physics at the Intensity Frontier

Search for motivated new physics with no preferred energy scale - the logarithmic crisis
kinetic mixing of a dark photon-ordinary photon versus hass of dark photon

.... lost among the orders of magnitude
G. Lanfranchi

Weizmann colloquium, Nov (17)

Search for New Physics at the Intensity Frontier

Theoryfull strategy, status of naturalness

Few slides to demystify naturalness.

Despite results why is it embarrassingly still the best motivation for new physics in HEP.

Why things are possibly actually worse conceptually?
The relaxion \& the naturalness logarithmic crisis.

The Higgs hierarchy/naturalness/fine-tuning problem

- Without new-dynamical scale the fine tuning problem problem is ill define;
=> Higgs naturalness is a UV problem.

Higgs RGE, bottom up is natural: $\quad \frac{d m_{H}^{2}}{d \ln \bar{\mu}^{2}}=\beta_{m}^{\mathrm{SM}} m_{H}^{2}, \quad \beta_{m}^{\mathrm{SM}}=\frac{3}{4} \frac{4 y_{t}^{2}+8 \lambda-3 g^{2}-g_{Y}^{2}}{(4 \pi)^{2}}$.

The Higgs hierarchy/naturalness/fine-tuning problem

Without new-dynamical scale the fine tuning problem problem is ill define;
=> Higgs naturalness is a UV problem.
Add particle w coupling $\lambda_{N} \&$ mass $M \Rightarrow$
Higgs finite additive correction: $\quad \frac{d m_{H}^{2}}{d \ln \bar{\mu}^{2}}=\frac{4 \lambda_{N}^{2}}{(4 \pi)^{2}} M^{2}+\beta_{m}^{\mathrm{SM}} m_{H}^{2}$

The Higgs hierarchy/naturalness/fine-tuning problem

Without new-dynamical scale the fine tuning problem problem is ill define;
=> Higgs naturalness is a UV problem.
Add particle w coupling $\lambda_{N} \&$ mass $M \Rightarrow$
Higgs finite additive correction: $\quad \frac{d m_{H}^{2}}{d \ln \bar{\mu}^{2}}=\frac{4 \lambda_{N}^{2}}{(4 \pi)^{2}} M^{2}+\beta_{m}^{\mathrm{SM}} m_{H}^{2}$

The Higgs hierarchy/naturalness/fine-tuning problem

- Without new-dynamical scale the fine tuning problem problem is ill define;
=> Higgs naturalness is a UV problem.
Add particle w coupling $\lambda_{N} \&$ mass $M \Rightarrow$
Higgs finite additive correction: $\quad \frac{d m_{H}^{2}}{d \ln \bar{\mu}^{2}}=\frac{4 \lambda_{N}^{2}}{(4 \pi)^{2}} M^{2}+\beta_{m}^{\mathrm{SM}} m_{H}^{2}$

The Higgs hierarchy/naturalness/fine-tuning problem

- Without new-dynamical scale the fine tuning problem problem is ill define;
=> Higgs naturalness is a UV problem.
Add particle w coupling $\lambda_{N} \&$ mass $M \Rightarrow$
Higgs finite additive correction: $\quad \frac{d m_{H}^{2}}{d \ln \bar{\mu}^{2}}=\frac{4 \lambda_{N}^{2}}{(4 \pi)^{2}} M^{2}+\beta_{m}^{\mathrm{SM}} m_{H}^{2}$

The Higgs hierarchy/naturalness/fine-tuning problem

Without new-dynamical scale the fine tuning problem problem is ill define; => Higgs naturalness is a UV problem.

The Higgs hierarchy/naturalness/fine-tuning problem

- Without new-dynamical scale the fine tuning problem problem is ill define;
=> Higgs naturalness is a UV problem.

The Higgs mass pushed to $M=>$ inconsistent $\backslash w$ data.

Naturalness gives us motivation to look for $\lesssim \mathrm{TeV}$ new particles

Higgs mass evolution in natural theories

The LHC depression - "naturalness is dead"

However:

Two reasons for why this logic is not bullet proof:

(i) for the high-energy colliders (ii) new \& welcome lepton-colliders

First: naturalness is not black \& white measure

First: naturalness is not black \& white measure

Second: relaxion - naturalness $\neq \mathrm{TeV}$ new physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $(\overbrace{\Lambda^{2}-g^{2} \phi^{2}}^{\mu^{2}(\phi)} H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

Focus shifts from Higgs to relaxion dynamics

↔ Can we even search for relaxion? Yes! How?

- Different pheno', no partners. (stops/t', gauginos/KK Z's ...)
- In most (but not all) cases, the relaxion is a
- It implies that we can simplify its coupling to two parameters, mass \& Higgs-mixing angle, with:

$$
\sin \theta \lesssim \frac{m}{v} \lesssim 10 \%, \quad m \lesssim \frac{v^{2}}{f} \lesssim 30 \mathrm{GeV} \times \frac{f}{\mathrm{TeV}} . \quad(v=174 \mathrm{GeV})
$$

The relaxion parameter space, first analogy w axion

(back to log scale \}-;)

The relaxion parameter space, overview plot

Frugiuele, Fuchs, GP, Schlaffer, in preparation.
Bad news: log scale naturalness searches;
Good news: it seems that hep/colliders can probe physical region!

Zooming in on the region accessible to colliders

Frugiuele, Fuchs, GP, Schlaffer, in preparation.
Lepton machines with large \# of Z/H probe sizable region! Same holds for HL-LHC \& SHiP.

Projections on relaxion-Higgs mixing

One slide on standard candles

Several SM coupling have not yet observed directly

- A conservative approach would be to attempt and measure these, in particular within the Higgs sector.

Fujii et al (2017)

Lighter generation couplings required to establish the SM flavor picture are not shown.

- HEP was special => energy (E) frontier guaranteed discoveries.
- Reaction => discard theory - pragmatically move to signature based strategy - limited when planning to the future (what learnt?).
- Observationally-driven approach => log-crisis.
- Naturalness => possibly best motivation for E-frontier.
- Relaxion => undermine the energy frontier however motivates for Higgs precision frontier via relaxion-Higgs mixing.

Backups

Relaxion's basic structure

QFT consistent constructions are of the form:
Choi, Kim \& Yun (2014) Choi \& Im; Kaplan \& Rattazzi; Gupta, Komargodski, GP \& Ubaldi (15)

$$
(\text { GKR: } g \sim M / f)
$$

$$
V(\phi, H)=H^{\dagger} H\left[\Lambda^{2}-M^{2} \cos (\phi / f)\right]+r \Lambda^{2} M^{2} \cos (\phi / f)+H^{\dagger} H \tilde{M}^{2} \cos (n \phi / f) .
$$

$$
V^{\prime}\left(\phi_{*}, v\right)=0 \Rightarrow r \Lambda^{4} \sin \left(\phi_{*} / f\right) \simeq v^{2} n \tilde{M}^{2} \sin \left(n \phi_{*} / f\right) \Rightarrow \phi_{*} \text { is generic. }(M \sim \Lambda)
$$

- It implies that generically:
(i) CP violation is spontaneously induced (problematic/for axion-relaxion models);
(ii) Higgs-relaxion mixing is induced:

$$
V_{\mathrm{mix}} \sim \frac{n v \tilde{M}^{2}}{f} \sin \left(n \phi_{*} / f\right) \times H \phi_{\mathrm{phys}} \simeq \frac{r \Lambda^{4}}{v f} \sin \left(\phi_{*} / f\right) \times H \phi_{\mathrm{phys}}
$$

Relaxion beams, relaxion flavor

Back to Original Relaxion Proposal

$$
\begin{aligned}
& \left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H \Rightarrow \phi_{\text {relaxed }} \sim \frac{\Lambda}{g} ;(\text { assume }: \Lambda \gg v) \\
& V(\phi)=r^{2} g^{2} \Lambda^{2} \phi^{2}-v^{n} M_{X}^{4-n} \cos (\phi / f)\left(\text { expect }: M_{X}<4 \pi v ; 4 \geq n>0\right)
\end{aligned}
$$

$$
V^{\prime}(\phi)=0 \Rightarrow \frac{\phi_{\text {relaxed }}}{f} \gtrsim\left(\frac{\Lambda}{4 \pi v}\right)^{4} \times r^{2} \quad\left[g \lesssim\left(\frac{4 \pi v}{\Lambda}\right)^{4} \times \frac{\Lambda}{f r^{2}}\right]
$$

$\Lambda \gg \mathrm{TeV} \Rightarrow\langle\phi\rangle \gg f$ required to be physical.

The (compact) Relaxion Proposal

$\Lambda \gg \mathrm{TeV} \Rightarrow\langle\phi\rangle \gg f$ required to be physical.

However, finite dim' EFT: pNGB => compact manifold.
Again: $\phi \rightarrow \phi+2 n \pi f(n \in \mathcal{Z})$ lead to same physics.
This is a redundant description of the theory $<=>$ discrete gauge sym' (no example \w local operator that breaks it)

As long as relaxion potential is controlled by global internal sym' EFT locality seems to implies compactness of pNGB manifold:

$$
\langle\phi\rangle \lesssim f .
$$

Brief: Comments on the Relaxion Proposal

```
Gupta, Komargodski, GP & Ubaldi (15)
```

Hence upon the identification:
axion $\leftrightarrow \phi, \mathrm{U}(1) \leftrightarrow \mathrm{PQ}$, and
$y_{u} H f_{\pi}^{3}$ or $y_{u}^{2} H^{\dagger} H f_{\pi}^{2} \leftrightarrow m_{L} m_{N} y y_{c} H^{\dagger} H$,
we expect a similar bound to hold:

$$
\Lambda \lesssim 10 \mathrm{TeV} \times \frac{\left[(y v)^{1,2} f_{\pi}^{3,2}\right]^{\frac{1}{4}}}{4 \pi v} \times\left(\frac{1}{4 \pi r}\right)^{\frac{1}{2}} \times\left(\frac{n}{10}\right)^{\frac{1}{4}}
$$

Note: axion realisations also suffer from inflated $n=>$ irrelevant operators $=>$ tiny backreaction/fine tuning/monstrous beta function.

The hierarchion: relaxion-familon-Nelson-Barr model

Davidi, Gupta, GP, Redigolo \& Shalit (17)

Solving the CP problem - relaxion-Nelson-Barr

- The problem: relaxion spontaneously lead to order one CP Breaking.
- Nelson-Barr models solves the strong CP problem based on:
(i) CP being spontaneously broken.
(ii) Structure such the O (1) CP phase induce the $\mathrm{O}(1)$ CKM phase (unlike lore a potential advantage compare to axion models ...)

If relaxion can be integrated to Nelson-Barr's structure => perfect marriage:
(i) Nelson-Barr reminder; (ii) Relaxion-Nelson-Barr.

Nelson-Barr (NB @ tree level)

 complex, relaxion the only source of CP breaking.

$$
\mathcal{L}_{\mathrm{NB}}=(\psi, Q)\left(\begin{array}{cc}
(\mu)_{1 \times 1} & \left(B_{N}(\phi)\right)_{1 \times 3} \\
(0)_{3 \times 1} & \left(H Y^{d}\right)_{3 \times 3}
\end{array}\right)\binom{\psi^{c}}{d_{i}^{c}}+Y_{u} Q u^{c} H+h . c .
$$

$$
\operatorname{Arg}\left(\operatorname{det} M_{q}^{7 \times 7}\right)=\operatorname{Arg}\left(\operatorname{det} M_{u}\right) \operatorname{Arg}\left(\mu \cdot \operatorname{det}\left(v Y^{d}\right)\right)=0
$$

No strong CP phase.

CKM: Integrating out heavy fermions, assuming $\mu^{2}+B_{n} B_{n}^{*} \gg v^{2} Y_{i k}^{d} Y_{j k}^{d}$,

$$
\begin{gathered}
{\left[M_{d}^{e f f} M_{d}^{e f f \dagger}\right]_{i j} \sim v^{2} Y_{i k}^{d} Y_{j k}^{d}-\frac{v^{2} Y_{i k}^{d} B_{k} B_{\ell}^{*} Y_{j \ell}^{d}}{\mu^{2}+B_{n} B_{n}^{*}}} \\
\text { O(1) CKM phase. }
\end{gathered}
$$

Relaxion-Nelson-Barr (NB)

Challenge - how to transmit relaxion's complex VEV to quark matrix:

Original model - $B_{i} \leftrightarrow\left(g \phi+\tilde{g} \phi^{*}\right) \psi d^{c}$.

Relaxion-NB - $B_{i} \leftrightarrow\left(g \phi_{N}+\tilde{g} \phi_{N}^{*}\right) \psi d^{c}$.

Inducing a phase + rolling potential!

Leptons \&
Majorana neutrinos

Quark \&
Nelson-Barr

Relaxion-familon

($\mathrm{U}(1)$ preserving int' on site 1 st \& m 'th $=>$ quark+lepton hierarchies.

Traceless quark charges to avoid generating theta term.

- Explicit breaking on lepton sector a la Gupta et al yield backreaction.

Hierarchion $=$ Relaxion-familon-Nelson-Barr model of hierarchies

Quark \&
Nelson-Barr

The main idea

Relaxion's physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

Relaxion mechanism

Graham, Kaplan \& Rajendran (15)

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} flips sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ backreaction stops ϕ.

Relaxion's physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

Relaxion's physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

Relaxion's physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

Relaxion's physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

Relaxion's physics

A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

$$
\langle H\rangle=v \neq 0
$$

Relaxion's physics

- A dynamical solution/amelioration of the Higgs fine-tuning problem:
(i) Add a scalar (relaxion) Higgs dependent mass: $\left(\Lambda^{2}-g^{2} \phi^{2}\right) H^{\dagger} H$.
(ii) ϕ roles till μ^{2} changes sign $\Rightarrow\langle H\rangle \neq 0 \Rightarrow$ stops rolling.

$\langle H\rangle=v \neq 0$

Roughly $\Lambda / v \lesssim n^{1 / 4} \sim\left(f_{\mathrm{UV}} / f_{\mathrm{IR}}\right)^{1 / 4} \sim 3^{N_{\text {clock }} / 4}$.
For $v \ll \Lambda$ progress achieved.

