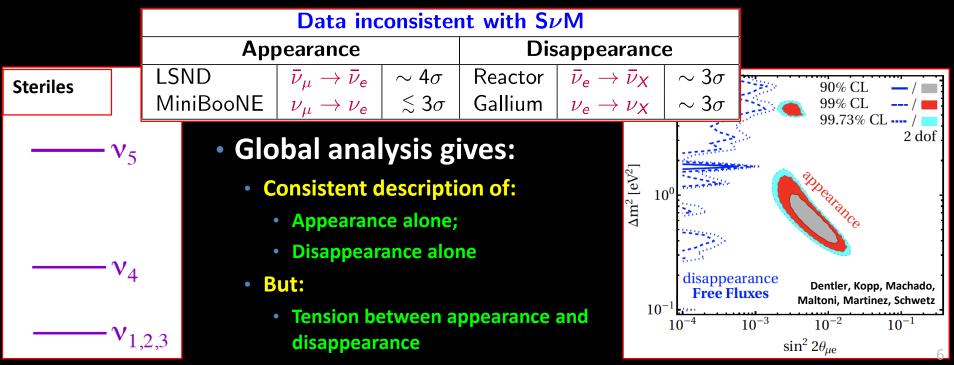

Opportunities in neutrino physics

K. Long, 18 December, 2017


FlavourMass
$$v_e$$
 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \mathcal{U}_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} \quad \begin{array}{c} v_1 \\ v_2 \\ v_2 \\ v_3 \end{pmatrix}$ v_{χ} v_{χ}

$$egin{array}{rcl} \mathcal{U}_{
m PMNS} &=& egin{pmatrix} 1 & 0 & 0 \ 0 & c_{23} & s_{23} \ 0 & -s_{23} & c_{23} \end{pmatrix} egin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \ 0 & 1 & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix} \ & egin{pmatrix} -s_{12} & c_{12} & 0 \ -s_{12} & c_{12} & 0 \ 0 & 0 & 1 \end{pmatrix} \ imes \mathrm{diag}\left(1, e^{i\phi_1}, e^{i\phi_2}
ight) \end{array}$$

Anomalies; light-sterile neutrinos?

- Wide variety of data described by the 'SvM'
- Anomalous behaviour in a variety of channels:

Neutrinos indicate SM is incomplete

- Neutrino oscillations imply:
 - Neutrinos have mass; mass states mix to make flavour states
- Neutrino mass → new degrees of freedom:
 - Right-handed neutrinos or Majorana neutrinos
 - New interactions?
- Mixing among three neutrinos:
 - CP-invariance violation in lepton sector
 - Origin of matter-dominated Universe?
- Possible cosmological impact:
 - Inflation;
 - Galaxy and star formation;
 - Dark matter

Opportunities in neutrino physics

MASS SCALE AND MAJORANA NATURE

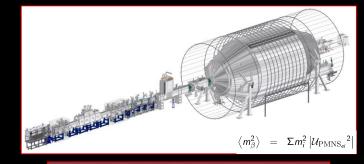
Absolute Neutrino Mass scale

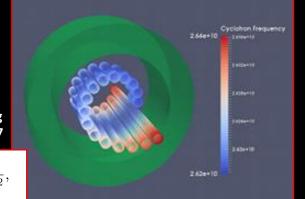
			B B B B B B B B B B B B B B B B B B B	
	Cosmology	Search for 0vββ	weak decays (β + EC)	
Observable	! _" = \$ %&	$\%^{)}_{(1)} = \begin{vmatrix} * & * & * & * \\ * & * & * & * & * & * &$	$\%^{)}_{(} = $ $[*_{+\&}]^{)}\%^{)}_{\&}$	
Present upper limit	0.17 – 0.72 eV	0.15 – 0.33 eV	2 eV	
Potential	15 – 50 meV	15 – 50 meV	40 meV	
Model dependence	Multi-parameter cosmological model	 Majorana v: LNV BSM contributions other than m(v)? nucl. matrix elements 	Direct, only kinematics; no cancellations in incoherent sum	
		ature 544 (2017) 47-52 – V.N.	raus et al., EPJ-C 40 (2005) 447-468 Aseev et al., PRD 84 (2011) 112003 Esfahani et al., JP-G 44 (2017) 05400	

EPS 2017; Venice

Philipp Ranitzsch, WWU Münster

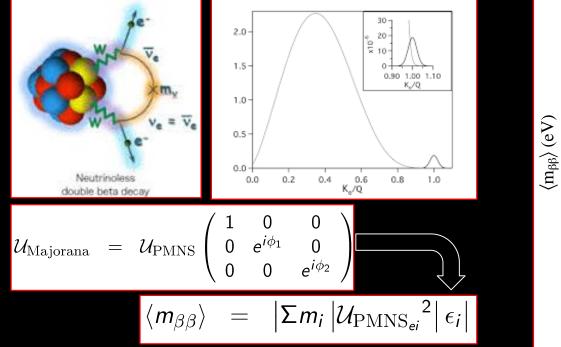
Mass scale

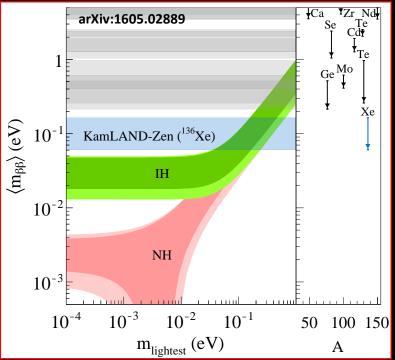

End-point measurements:


http://www.katrin.kit.edu

- Katrin (Karlsruhe Tritium Neutrino experiment):
 - "First light": Oct16
 - ^{83m}Kr measurement now
 - First tritium 2018
 - Goal m_b < 0.2 eV
- Project 8:
 - Cyclotron radiation emission spectroscopy
 - In proof of principle phase
 - Goal m_b < 0.04 eV

http://www.project8.org arXiv:1703.02037


$$f = \frac{f_0}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}/c^2}$$



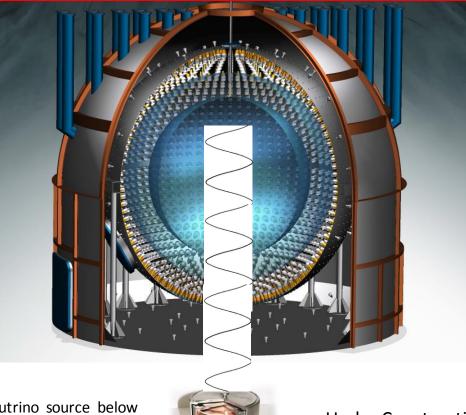
Mass scale and Majorana nature Majorana neutrino "is its own antiparticle":

- Removes one constraint on neutrino-mixing matrix:

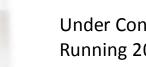
11

Project	lsotope	lsotope Mass (kg fiducial)	Currently Achieved (10 yr)	Location	SNO+ PHASE I NEXT 10
CUORE	130 Te	206	>0.028	Gran Sasso	
MAJORANA	⁷⁶ Ge	24.8		SURF	MAJORANA DEMONSTRATOR
GERDA	⁷⁶ Ge	31	>0.21	Gran Sasso	GERDA II
EXO-200	136 Xe	79	>0.11	WIPP	EXO200 PHASE II
NEXT	136 Xe	10→100		Canfranc	SUPERNEMO
SuperNEMO	82 Se+	7	>0.001	Frejus	DEMONSTRATOR
KamLAND-Zen	136 Xe	434	>0.19	Kamioka	CUORE
SNO+	130 Te	160		SNOLAB	KAMLAND ZEN 600-kg PHASE
PANDAX-III	136 Xe	200		Jinping	2015 2016 2017 2018 2019 2020

Opportunities in neutrino physics


LIGHT STERILE NEUTRINOS

B. Fleming ICFA Seminar


Light sterile neutrinos from source

SOX experiment at Gran Sasso lab

> Look for pattern of oscillations inside the Borexino Detector

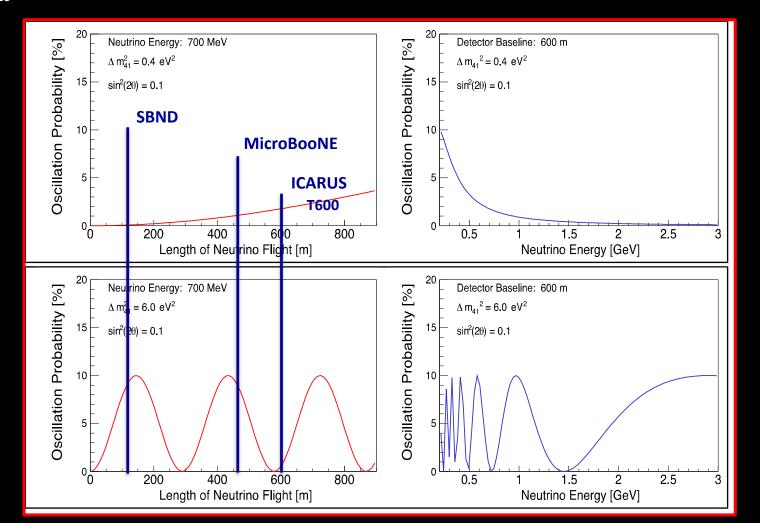
Anti electron neutrino source below the detector

Under Construction Running 2018/2019

Sterile-neutrino searches at reactors

- Re-evaluation of flux:
 - "... not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos ..." Giunti et al, arXiv:1704.02276

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD
	e luci		Su doped Es		chied i Mit	N. Bowden AAP 20

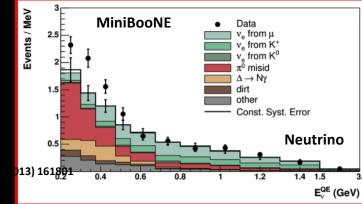

Short Baseline Neutrino programme

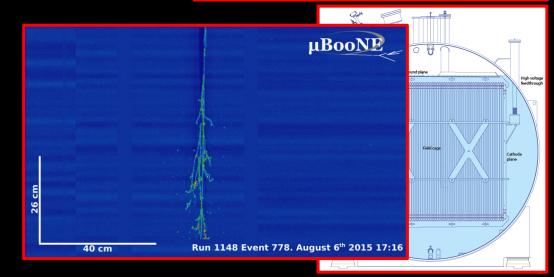
arXiv:1503.01520

- Definitive search for $\Delta m^2 \sim 1 \text{ eV}^2$ sterile neutrinos:
 - Exploit L, E and L/E modulation; detectors at three baselines
 - Appearance, $v_{\mu} * v_{e}$, and, disappearance, $v_{\mu} * v_{\chi}$
 - Exploit 3 LAr detectors; minimise inter-detector systematics
- Robustly address backgrounds and uncertainties:
 - v_e contamination in FNAL Booster Neutrino Beam
 - Photons produced by NC vN and cosmic rays
 - External v interactions in earth or experimental hall

arXiv:1503.01520

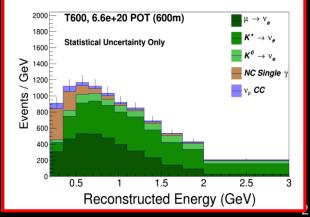
arXiv:1503.01520


Short Baseline Near Detector


- 275 T LAr TPC @ *L* = 110m
 - Characterise beam before oscillation
 - Address many dominant systematic uncertainties
- Neutrino scattering
 - Total vN sample: $^{7} \times 10^{6}$
 - From 6.6 × 10²⁰ pot (~3 years)
 - Inclusive v_e samples:
 - Charged current: ~37 × 10³
 - Neutral current: ~14 × 10³
 - High-statistics studies:
 - Cross sections
 - Final states

- 170 T LAr TPC @ *L* = 470
- Solo capabilities:
 - Investigate MiniBooNE low-energy v_e excess;
 - Measure neutrino cross sections (BNB & NuMI)
 - LAr detector R&D
- Neutrino scattering
 - Total vN sample: ~2.5 × 10⁵
 - From 6.6 × 10²⁰ pot (~3 years)
 - Inclusive v_e samples:
 - Charged current: ~1.5 × 10³
 - Neutral current: ~0.5 × 10³
 - Further studies of:
 - Cross sections/final states

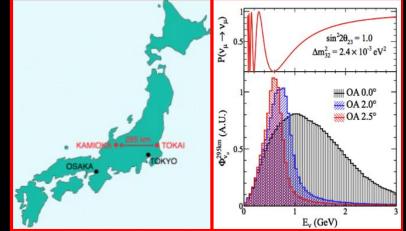
MicroBooNE



- 760 T LAr TPC @ 600 m
 Large mass gives good v_e rate
- Exposed to:
 - Booster Neutrino Beam; and
 - Off-axis to NuMI beam
- Refurbishment; WA104:
 - Part of CERN Neutrino Platform programme
 - Both T300 modules transported from Gran Sasso to CERN
 - Refurbished and transported to FNAL
- Data taking 2018/19

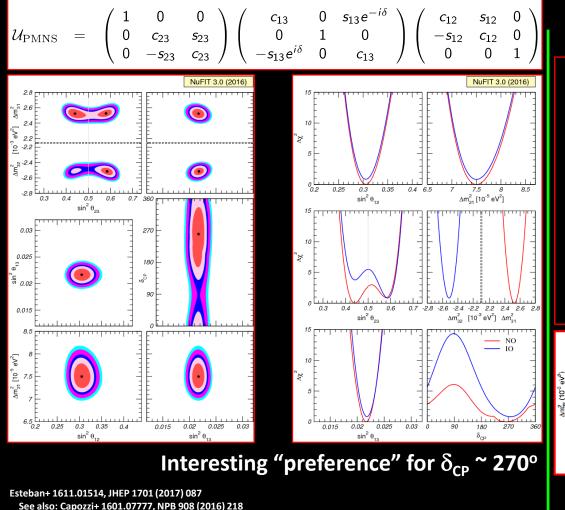
ICARUS T600

Opportunities in neutrino physics


NEUTRINO OSCILLATIONS

Long-baseline neutrino oscillation programme

- Present/recent experiments:
 - Europe: OPERA, ICARUS [complete]
 - Japan:
 - US: MINOS, MINOS+ [in data analysis phase]


T2K

- [in data analysis phas NOvA
- Near future:
 - Japan: T2K-II, T2HK/T2HKKUS: DUNE

ΝΟνΑ

- High power NuMI beam
 - 700 kW expected 2016
- Low-Z tracking calorimeters
- 810 km baseline
 - Fermilab to Ash River, Minnesota
- Data taking with complete detectors started in November 2014

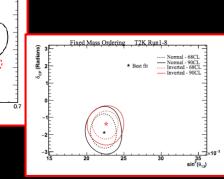
Forero+ 1405.7540, PRD90 (2014) 093006

State of the art

- Summer 2017:
 - NOvA:
 - θ₂₃ ≠ 45° at 2.6σ

- T2K:

Normal Hierarchy, 90% CL

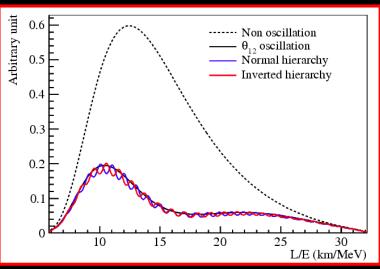

----- T2K 2014

0.5 εin²θ_α

04

NOvA 6.05x10²⁰ POT

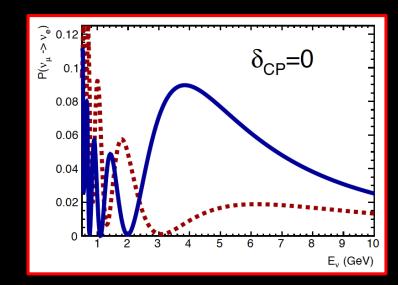
• CP conservsation excluded at \geqq 2 σ

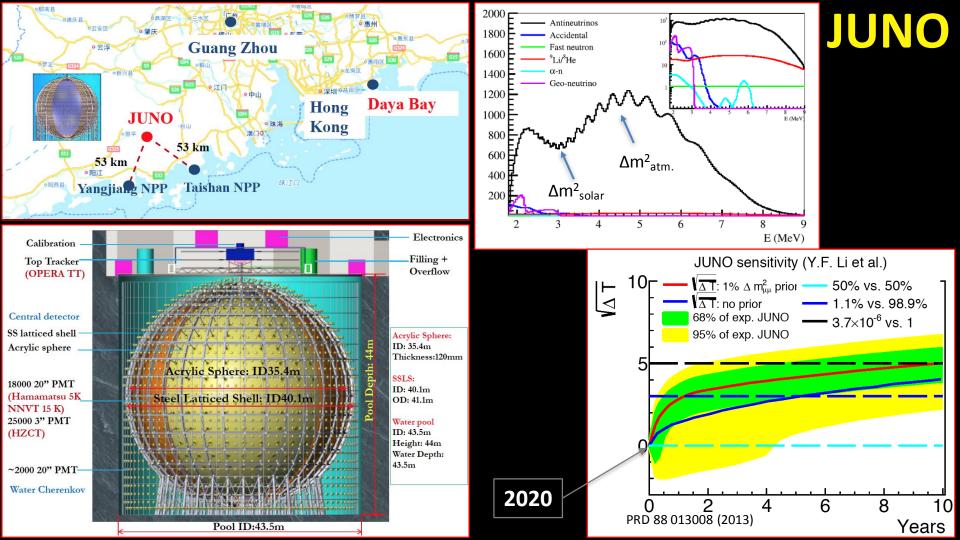

What we need to know:

- Do neutrino oscillations violate the CP symmetry?
- Ordering of neutrino mass eigenstates and neutrino mass scale
- Empirical relationships between v-mixing parameters ... or between v- and q-mixing parameters
- Dirac or Majorana?
- Anomalies (aka hints for sterile neutrinos): statistical fluctuations, systematic effects or indications of new physics?

Impact: particle physics, astroparticle physics, cosmology, ...

Mass hierarchy: two options

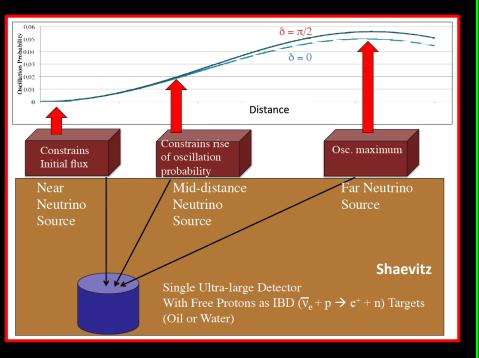

Exploit *L/E* spectrum:

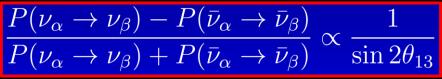


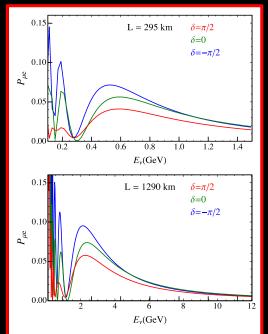
JUNO:

- Reactor-neutrino exp^t
- 20 kton liquid-scintillator
 - 3%/VE energy resolution
- Under contruction

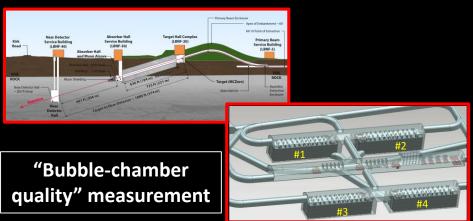
- Exploit matter effect:
 - Electron-neutrino may undergo charge-exchange with atomic electron
 - Modifies oscillation probability
 - Large source-detector distance

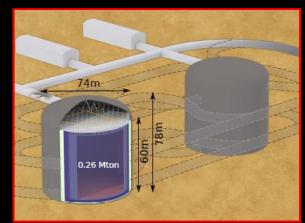



CP-invariance violation: two options

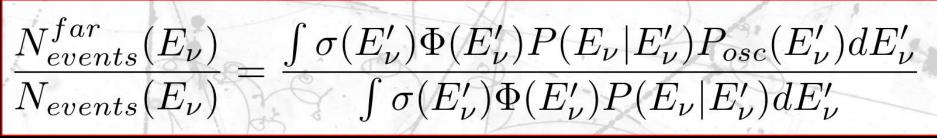

• Exploit *L/E* spectrum:

- **DAE** δ **ALUS**


Measure asymmetry:



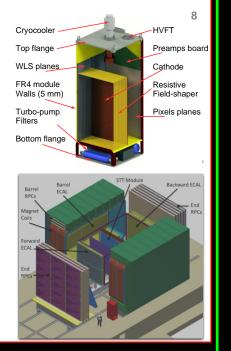
Next generation experiments


- DUNE
 - New beam from FNAL
 - Horn-focused, wide-band beam
 - Peak in E_v ~ 3 GeV; matched to 1300 km baseline
- Modular, 40 kton LAr

- Hyper-K(K)
 - Upgrade to J-PARC beam
 - Off-axis, narrow band
 - Two 260 kton H₂O Cherenkov
 - Considering second tank in Korea (>1000 km)

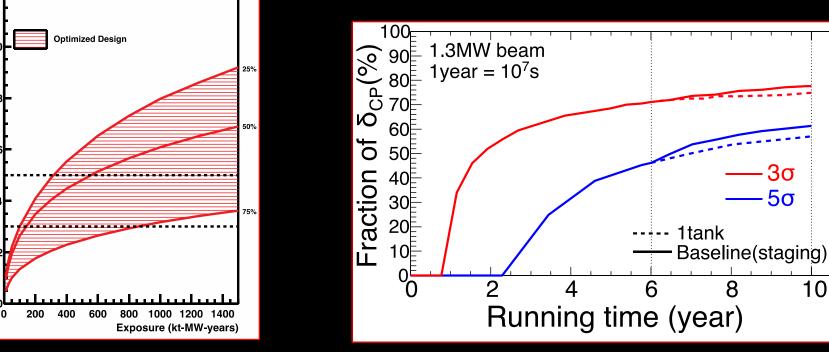
The importance of the near detector

- Seek to extract P_{osc}
- Near detector:
 - Unoscillated estimates of flux and cross section
- Test beam exposures:
 - Map P(E|E')
- But, imperfect cancellation of:
 - Cross sections as a function of E':
 - Near and far species are not identical
 - Flux as a function of *E*':
 - Sampling of neutrino beam not identical near and far
 - P(E|E') not necessarily the same near and far


Getting all this right requires an industry!


J.M. Albo EPS-HEP 2017

• DUNE:


DUNENEAR DELECTOR

- ND has fundamental role for LBL physics, constraining systematic uncertainties through the measurement of neutrino flux and interaction cross sections.
- It will record largest sample of neutrino interactions ever collected.
- Also sensitive to new physics (e.g. heavy sterile neutrinos).
- DUNE ND currently under design. Conceptual design ready by 2018.
- It will likely feature a modular liquid argon TPC and a magnetised, high-resolution tracker.

Sensitivity to CPiV

• DUNE and Hyper-K alone:

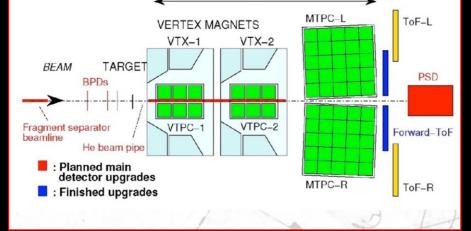
 $= \sqrt{\Delta \chi^2}$

- -5σ sensitivity over >50% of all values of δ_{CP} after 10 yrs
- Combined—sensitivity enhanced

Opportunities in neutrino physics

SUPPORTING PROGRAMME

S. Bordoni EPS-HEP 2017

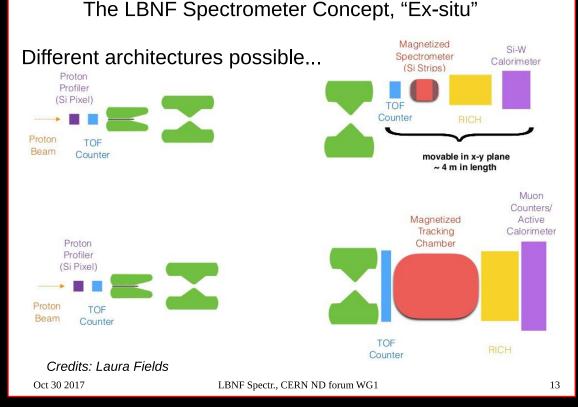

CERN Neutrino Platform

- Goal:
 - "Support European efforts in neutrino experiments in the US and Japan"
- NP01 (WA104/ICARUS) : far detector for the US Short Baseline program
- NP02 (protoDUNE-DP WA105): demonstrator + engineering prototype for a Double phase (LAr+GAr) TPC
- NP04 (protoDUNE-SP): engineering prototype for a LAr TPC
- NP05 (Baby MIND): a magnetised muon spectrometer for the WAGASCI experiment in Japan
 - NP03: generic R&D framework
 - ArgonCUBE: R&D for a modular (magnetised) LAr TPC

Hadroproduction to predict neutrino flux

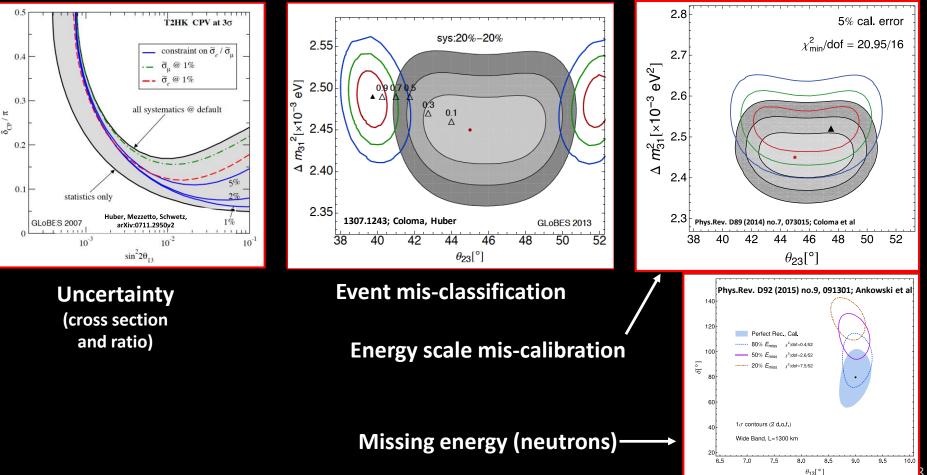
- NA61/SHINE:
 - Proton and ion beams from the SPS
 - Thin target:
 - Absolute hadroproduction spectra

13 m

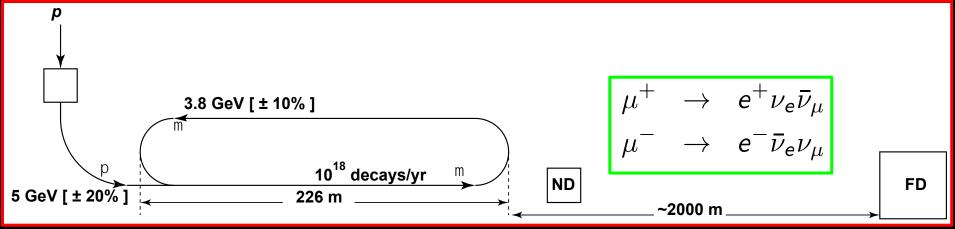

- Thick target:

- Replica of v-production target
 - Includes effect of re-interactions of particles.

P. Lebrun CENF WG2, 30Oct17


Hadron spectra "ex-situ"

DUNE considering instrumenting replica neutrino target and capture:

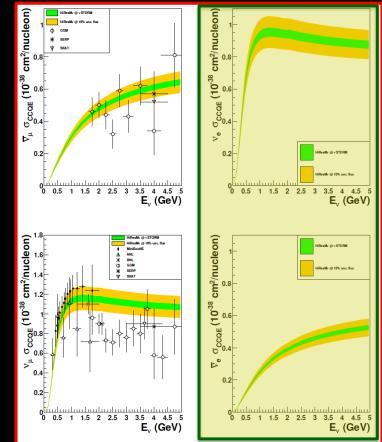


36

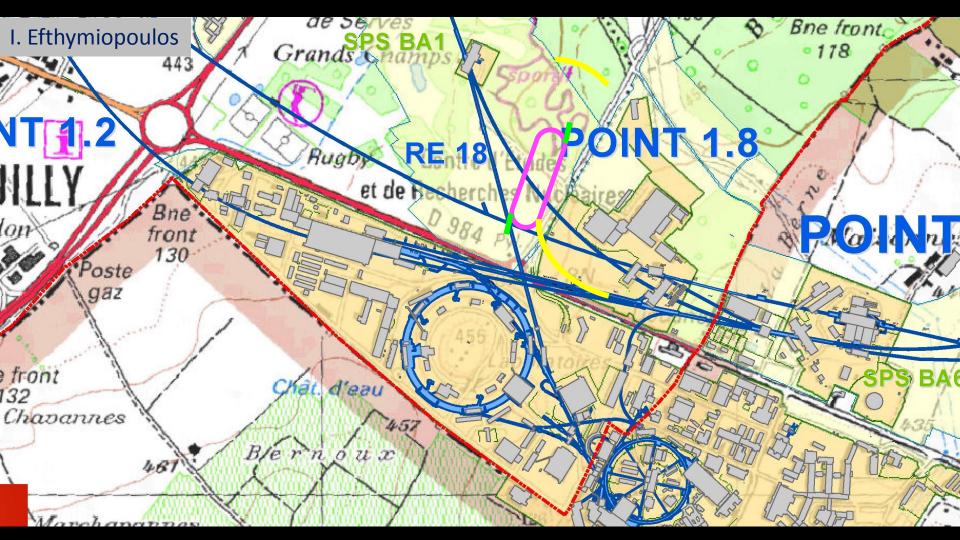
Systematic uncertainty and/or bias

Neutrinos from stored muons

- Scientific objectives:
 - 1. %-level (v_eN)cross sections
 - Double differential
 - 2. Sterile neutrino search
 - Beyond Fermilab SBN


- Precise neutrino flux:
 - Normalisation: < 1%</p>
 - Energy (and flavour) precise
 - $\pi \rightarrow \pi$ injection pass:

– "Flash" of muon neutrinos


CCQE measurement at nuSTORM

- CCQE at nuSTORM:
 - Six-fold improvement in systematic uncertainty compared with "state of the art"
 - Electron-neutrino cross section measurement unique
- Require to demonstrate:
 ~<1% precision on flux

Individual v_e measurements from T2K and MINERvA [10.1103/PhysRevLett.113.241803, 10.1103/PhysRevLett.116.081802] $\,40$

Opportunities in neutrino physics

TESTING THE PARADIGM

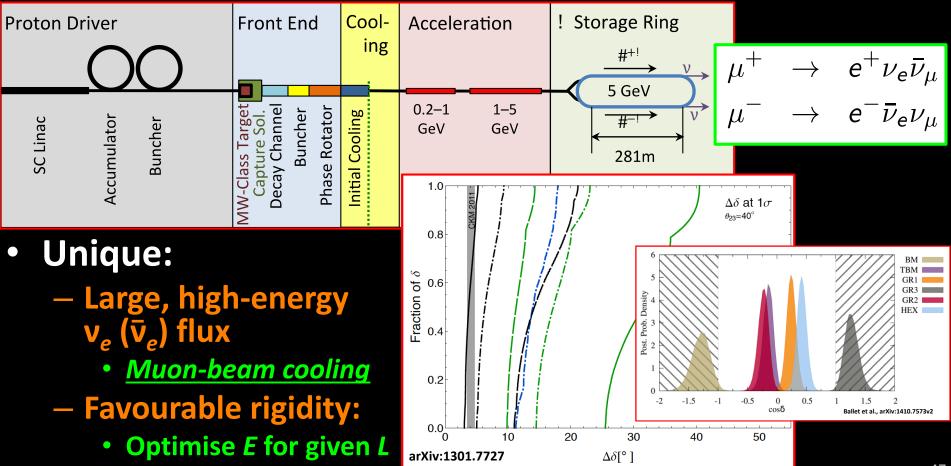
What we need to know:

- Do neutrino oscillations violate the CP symmetry?
- Ordering of neutrino mass eigenstates and neutrino mass scale
- Empirical relationships between n-mixing parameters ... or between n- and q-mixing parameters
- Dirac or Majorana?
- Anomalies (aka hints for sterile neutrinos): statistical fluctuations, systematic effects or indications of new physics?

Impact: particle physics, astroparticle physics, cosmology, ...

Taking stock

- CPiV:
 - T2K/NOvA, T2K-II, HK/DUNE
- Mass ordering:
 - SK, NOvA, JUNO, HKK/DUNE, ORCA, PINGU
- **Empirical relationships?**
 - Requires sensitivity and precision
- Dirac or Majorana:
 - KamLand-ZEN, …
- Anomalies:
 - SBND, reactor-neutrino experiments, long-baseline neutrino experiments


Pursuing understanding requires:

 Novel, high-resolution detectors
 Novel beams with known flux and energy spectrum

The potential of muon beams, pros and cons

- Muon beams have the potential to:
 - Revolutionise the study of the neutrino
 - Provide a route to multi-TeV lepton-antilepton annihilation
- Unique potential arises because:
 - Heavy: $200 m_{e} < m_{\mu} < 0.1 m_{p}$
 - Enormous (5 × 10⁻¹⁰ cf e) reduction in beam-/bremsstrahlung
 - Enhanced (5 \times 10⁴ cf e^+e^-) *s*-channel coupling to Higgs
 - Decay: lifetime at rest 2.2 μs
 - v_e , v_{μ} 50/50
 - Precisely known energy spectrum
- Challenges:
 - Tertiary beam
 - Decay: lifetime at rest 2.2 μs

Neutrino Factory: sensitivity & precision

Opportunities in neutrino physics

CONCLUSIONS

Conclusions

- Neutrino oscillations imply that "new physics" exists:
 - The study of the neutrino is the study of physics beyond the Standard Model
 - Just starting; much to measure, still more to learn
- Opportunities in neutrino physics:
 - The flagship programmes:
 - DUNE and Hyper-K
 - Particularly the critical near detectors that are not yet defined
 - Sterile neutrino searches:
 - Accelerator based, at FNAL SBN
 - Many opportunities at reactors and sources
 - Supporting programmes:
 - Drive advances in detector and accelerator technologies; CENF
 - Measurement of hadroproduction spectra
 - Measurement of neutrino cross sections—especially $v_e N$ at nuSTORM at CERN
- Neutrino physics programme will remain important for a long time to come!