Matching the Quasi Parton Distribution in a Momentum Subtraction Scheme

Yong Zhao Massachusetts Institute of Technology

Lattice PDF Workshop University of Maryland, College Park

I. Stewart and Y.Z., PRD 2018, arXiv:1709.04933

Outline

PDF from lattice QCD through LaMET

Nonperturbative renormalization of the quasi PDF

• Match quasi RI/MOM PDF to MSbar PDF

Numerical results

Outline

• PDF from lattice QCD through LaMET

Nonperturbative renormalization of the quasi PDF

Match quasi RI/MOM PDF to MSbar PDF

Numerical results

Parton Distribution Function

Definition of PDFs in QCD factorization theorems:

$$q(x,\mu) = \int \frac{d\xi^-}{4\pi} e^{-ixP^+\xi^-} \left\langle P \Big| \overline{\psi}(\xi^-) \gamma^+ U(\xi^-,0) \psi(0) \Big| P \right\rangle \left| \int \sigma = \sum_{a,b} f_a(x_1) \otimes f_b(x_2) \otimes \sigma_{ab} \right\rangle$$

$$\xi^{\pm} = (t \pm z) / \sqrt{2} \quad U(\xi^{-}, 0) = P \exp \left| -ig \int_{0}^{\xi^{-}} d\eta^{-} A^{+}(\eta^{-}) \right|$$

- Gauge-invariant and boost-invariant light-cone correlation;
- In the light-cone gauge A⁺=0, has a clear interpretation as parton number density;
- Not directly calculable from lattice QCD due to real-time dependence of the light-cone.

Large momentum effective theory

• Quasi-PDF:

X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014.

$$\tilde{q}(x,P^{z},\tilde{\mu}) = \int \frac{dz}{4\pi} e^{ixP^{z}z} \left\langle P \Big| \overline{\psi}(z)\gamma^{z} U(z,0)\psi(0) \Big| P \right\rangle$$

$$z^{\mu} = (0,0,0,z)$$
$$U(z,0) = P \exp\left[-ig \int_{0}^{z} dz' A^{z}(z')\right]$$

- Equal-time correlation along the *z* direction, calculable in lattice QCD when *P*^z<<*a*⁻¹, dependent of *P*^z;
- Under an infinite Lorentz boost along the *z* direction, the spatial gauge link approaches the light-cone direction, and the quasi-PDF reduces to the (light-cone) PDF.

Large momentum effective theory

- Taking the $P^z \rightarrow \infty$ limit of the quasi-PDF is ill-defined due to the latter's nontrivial dependence of P^z ,
- The (renormalized) quasi PDF is related to the PDF through a factorization formula:

$$\tilde{q}_i^X(x, P^z, \tilde{\mu}) = \int_{-1}^{+1} \frac{dy}{|y|} C_{ij}^X\left(\frac{x}{y}, \frac{\tilde{\mu}}{P^z}, \frac{\mu}{|y|P^z}\right) q_j(y, \mu) + \mathcal{O}\left(\frac{M^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{P_z^2}\right), \qquad (8)$$

- They have the same IR divergences;
- *C* factor matches their UV difference, and can be calculated in perturbative QCD;
- Higher-twist corrections suppressed by powers of P^{z} .

Procedure of Systematic Calculation

1. Simulation of the quasi PDF in lattice QCD

3. Subtraction of higher twist corrections

$$\tilde{q}_i(x, P^z, \tilde{\mu}) = \int_{-1}^{+1} \frac{dy}{|y|} \ C_{ij}\left(\frac{x}{y}, \frac{\tilde{\mu}}{P^z} \frac{\mu}{|y|^{pz}}\right) q_j(y, \mu) + \mathcal{O}\left(\frac{M^2}{P_z^2}, \frac{\Lambda_{\rm QCD}^2}{P_z^2}\right) \,,$$

2. Renormalization of the lattice quasi PDF, and then taking the continuum limit

4. Matching to the MSbar PDF.

Outline

PDF from lattice QCD through LaMET

Nonperturbative renormalization of the quasi PDF

• Match quasi RI/MOM PDF to MSbar PDF

Numerical results

Renormalization

• The gauge-invariant quark Wilson line operator can be renormalized multiplicatively in the coordinate space:

 $\tilde{O}_{\Gamma}(z) = \overline{\psi}(z) \Gamma W(z,0) \psi(0) = Z_{\psi,z} e^{-\delta m|z|} \left(\overline{\psi}(z) \Gamma W(z,0) \psi(0) \right)^{R}$

X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green, K. Jansen, and F. Steffens, 2017; T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017.

 Different renormalization schemes can be converted to each other in coordinate space;

$$\begin{split} \tilde{Q}^X(\zeta, z^2 \mu_R^2) = & \frac{Z_{\overline{\mathrm{MS}}}(\epsilon, \mu)}{Z_X(z^2 \mu_R^2, \epsilon)} \, \tilde{Q}^{\overline{\mathrm{MS}}}(\zeta, z^2 \mu^2) \\ = & Z'_X(z^2 \mu_R^2, \mu_R^2 / \mu^2) \, \tilde{Q}^{\overline{\mathrm{MS}}}(\zeta, z^2 \mu^2) \,, \end{split}$$

• We can implement a nonperturbative renormalization scheme on the lattice.

Regulator independence

• If we apply the same renormalization scheme in both lattice and continuum theories,

$$\tilde{O}_{\Gamma}^{R}(z,\mu) = Z_{X}^{-1}(z,\varepsilon,\mu)\tilde{O}_{\Gamma}(z,\varepsilon)$$
$$= \lim_{a\to 0} Z_{X}^{-1}(z,a^{-1},\mu)\tilde{O}_{\Gamma}(z,a^{-1})$$

- This should apply to all renormalization schemes;
- After renormalization, we can just calculate the matching coefficient in DimReg;
- However, not all schemes can be implemented nonperturbatively on the lattice.

A momentum subtraction scheme Martinelli et al., 1994

 Regulator-independent momentum subtraction scheme (RI/MOM):

$$Z_{OM}^{-1}(z,a^{-1},p_{R}^{z},\mu_{R})\langle p|\tilde{O}_{\Gamma}(z,a^{-1})|p\rangle|_{p^{2}=\mu_{R}^{2}} = \langle p|\tilde{O}_{\Gamma}(z)|p\rangle_{\text{tree}}$$

$$\frac{\langle p|\tilde{O}_{\Gamma}(z,a^{-1})|p\rangle|_{p^{2}=\mu_{R}^{2}}}{\langle p|\tilde{O}_{\Gamma}(z)|p\rangle_{\text{tree}}} = \frac{\langle p|\tilde{O}_{\Gamma}(z)|p\rangle|_{p^{2}=\mu_{R}^{2}}}{(4p_{R}^{\Gamma}\zeta)e^{-ip_{R}^{z}*z}}$$

- Can be implemented nonperturbatively on the lattice.
- Scales in renormalization: μ_R , p_R^z

Nonperturbative renormalization on the lattice

• For $\Gamma = \gamma^{z}$, we have to choose $p_{R}^{z} \neq 0$; for $\Gamma = \gamma^{t}$, we can choose $p_{R}^{z} = 0$ while $|p^{2}| >> \Lambda_{\text{QCD}}$;

$$Z_{OM}(z,a^{-1},p_z^R,\mu_R) = \left\langle p \middle| \tilde{O}_{\Gamma}(z) \middle| p \right\rangle \Big|_{\substack{p^2 = \mu_R^2 \\ p_z = p_z^R}} / (4p_R^{\Gamma} \zeta e^{-ip_R^{z*z}})$$

- For nonzero p_R^z , Z_{OM} is a complex number, real part symmetric and imaginary part anti-symmetric;
- Operator mixing on the lattice between O_{Γ} and O_{1} at $O(a^{0})$ (for γ^{z}) and $O(a^{1})$ (for γ^{t}) due to broken chiral symmetry. M. Constantinou and H. Panagopoulos, 2017; T. Ishikawa et al. (LP3), 2017.

Outline

PDF from lattice QCD through LaMET

Nonperturbative renormalization of the quasi PDF

• Match quasi RI/MOM PDF to MSbar PDF

I. Stewart and YZ, PRD 2018, arXiv:1709.04933

Numerical results

Matching coefficient

Strategy:

- Extracting matching coefficient by comparing the quasi-PDF and light-cone PDF in an off-shell quark state;
- Quark off-shellness $p^2 < 0$ regulates the infrared (IR) and collinear divergences;

One-loop Feynman diagrams

- Dimensional regularization $d=4-2\varepsilon$;
- $\Gamma = \gamma^{z}$ for discussion in this talk. External momentum $p^{\mu} = (p^{0}, 0, 0, p^{z})$ and $p^{2} < 0$;
- Fourier transform to the momentum space to obtain the quasi-PDF;

Three dimensional integration; Ultraviolet (UV) convergent. Four dimensional integration; UV divergent, regularized by *ε*.

At bare level, which means keeping ε finite, satisfies vector current conservation (V.C.C.); $\int dx \, \tilde{q}^{(1)}(x, p^z, \varepsilon, -p^2) = 0$

In the MSbar renormalization, a careful ε expansion is needed;

Izubuchi, Ji, Jin, Stewart and Y.Z., 2018 In the first calculation with transverse momentum cutoff (Xiong, Ji, Zhang and Y.Z., 2014), we took $\varepsilon = 0$ and write quasi-PDF as a plus function to enforce V.C.C..

 $\tilde{q}^{(1)}(x,p^z) = h(x,p^z) - \delta(1-x) \int dx' h(x',p^z)$

One-loop results

I. Stewart and YZ, PRD 2018, arXiv:1709.04933

• One-loop bare matrix element (with V.C.C.):

$$\begin{split} \tilde{q}^{(1)}(z,p^z,0,-p^2) &= \frac{\alpha_s C_F}{2\pi} \left(4p^z \zeta\right) \int_{-\infty}^{\infty} dx \left(e^{-ixp^z z} - e^{-ip^z z}\right) h(x,\rho) \\ \rho &\equiv \frac{\left(-p^2 - i\varepsilon\right)}{p_z^2}, \end{split} \\ h(x,\rho) &\equiv \begin{cases} \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)}\right] \ln \frac{2x-1+\sqrt{1-\rho}}{2x-1-\sqrt{1-\rho}} - \frac{\rho}{4x(x-1)+\rho} + 1 & x > 1 \\ \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)}\right] \ln \frac{1+\sqrt{1-\rho}}{1-\sqrt{1-\rho}} - \frac{2x}{1-x} & 0 < x < 1 \\ \frac{1}{\sqrt{1-\rho}} \left[\frac{1+x^2}{1-x} - \frac{\rho}{2(1-x)}\right] \ln \frac{2x-1-\sqrt{1-\rho}}{2x-1+\sqrt{1-\rho}} + \frac{\rho}{4x(x-1)+\rho} - 1 & x < 0 \end{cases} \end{split}$$

• Potential problem:

 $\lim_{|x|\to\infty} h(x,\rho) \sim -\frac{3}{2|x|}, \quad \int_{-\infty}^{\infty} dx \ h(x,\rho) \text{ is logarithmically divergent needs } \varepsilon \text{ to be regularized!}$

- This logarithmic divergence is what needs to be treated carefully for the MSbar scheme;
- Not a problem for the RI/MOM scheme!

RI/MOM renormalization

 $\widehat{q}_{\text{CT}}^{(1)}(z, p^{z}, p_{R}^{z}, -p^{2}, \mu_{R}) = \widetilde{q}_{\text{CT}}^{(1)}(z, p^{z}, p_{R}^{z}, \mu_{R}) = -Z_{\text{OM}}^{(1)}(z, p_{R}^{z}, 0, \mu_{R}) \, \widetilde{q}_{\text{OM}}^{(0)}(z, p^{z}) \\ \widetilde{q}_{\text{OM}}^{(1)}(z, p^{z}, p_{R}^{z}, -p^{2}, \mu_{R}) = \widetilde{q}_{\text{OM}}^{(1)}(z, p^{z}, 0, -p^{2}) + \widetilde{q}_{\text{CT}}^{(1)}(z, p^{z}, p_{R}^{z}, \mu_{R}) \\ \widetilde{q}_{\text{OM}}^{(1)}(z, p^{z}, 0, -p^{2}) = \frac{\alpha_{s}C_{F}}{2\pi} (4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z} \right) h(x, \rho) \quad \rho = \frac{-p^{2}}{p_{z}^{2}} = \frac{p_{z}^{2} - p_{0}^{2}}{p_{z}^{2}} < 1 \\ \widetilde{q}_{\text{CT}}^{(1)}(z, p^{z}, p_{R}^{z}, \mu_{R}) = -\frac{\alpha_{s}C_{F}}{2\pi} (4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{i(1-x)p_{R}^{z}z - ip^{z}z} - e^{-ip^{z}z} \right) h(x, r_{R}) \quad r_{R} = \frac{\mu_{R}^{2}}{(p_{R}^{z})^{2}} = \frac{(p_{R}^{4})^{2} + (p_{R}^{z})^{2}}{(p_{R}^{z})^{2}} > 1 \text{ for lattice momentum,} \\ \text{analytical continuuation from } \rho < 1!$

 $\begin{array}{l} \bullet \quad \text{Identify the collinear divergence: onshell limit!} \\ \hline \tilde{q}_{\text{OM}}^{(1)}(z,p^{z},p_{R}^{z},-p^{2}<< p_{z}^{2},\mu_{R}) = \tilde{q}^{(1)}(z,p^{z},0,-p^{2}<< p_{z}^{2}) + \tilde{q}_{\text{CT}}^{(1)}(z,p^{z},p_{R}^{z},\mu_{R}) \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\ll p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{-ip^{z}z}\right) h_{0}(x,\rho), \\ \hline \tilde{q}^{(1)}(z,p^{z},0,-p^{2}\leftrightarrow p_{z}^{2}) = \frac{\alpha_{s}C_{F}}{2\pi}(4p^{z}\zeta) \int_{-\infty}^{\infty} dx \left(e^{-ixp^{z}z} - e^{i$

Lattice PDF Workshop, Maryland

4/6/18

RI/MOM renormalization

• Fourier transform to obtain the x-dependent quasi-PDF:

$$\begin{split} \tilde{q}_{\rm OM}^{(1)}(x, p^z, p_R^z, \mu_R) &= \int \! \frac{dz}{2\pi} \, e^{ixzp^z} \, \tilde{q}_{\rm OM}^{(1)}(z, p^z, p_R^z, \mu_R) & \eta \!=\! \frac{p^z}{p_R^z} \\ &= \frac{\alpha_s C_F}{2\pi} \, (4\zeta) \bigg\{ \int \! dy \, \big[\delta(y-x) - \delta(1-x) \big] \big[h_0(y, \rho) - h(y, r_R) \big] \\ &+ h(x, r_R) - |\eta| \, h \big(1 + \eta(x-1), r_R \big) \bigg\} \,, \end{split}$$

One can explicitly check that the RI/MOM quasi-PDF satisfies vector current conservation:

$$\int_{-\infty}^{\infty} dx \ \tilde{q}_{\rm OM}^{(1)}(x, p^z, p_R^z, -p^2, \mu_R) = \frac{\alpha_s C_F}{2\pi} (4\zeta) \left[\int_{-\infty}^{\infty} dx \ h(x, r_R) - \int_{-\infty}^{\infty} dx \ |\eta| h(1 + |\eta| (x - 1), r_R) \right] = 0$$

RI/MOM renormalization

• Full result of RI/MOM quasi-PDF: Plus functions with δ -function at x=1

$$\begin{split} \tilde{q}_{\rm OM}^{(1)}(x,p^z,p_R^z,\mu_R) & (37) \\ &= \frac{\alpha_s C_F}{2\pi} (4\zeta) \begin{cases} \left[\frac{1+x^2}{1-x} \ln \frac{x}{x-1} - \frac{2}{\sqrt{r_R-1}} \left[\frac{1+x^2}{1-x} - \frac{r_R}{2(1-x)} \right] \arctan \frac{\sqrt{r_R-1}}{2x-1} + \frac{r_R}{4x(x-1)+r_R} \right]_{\oplus} & x > 1 \\ \left[\frac{1+x^2}{1-x} \ln \frac{4(p^z)^2}{-p^2} + \frac{2}{\sqrt{r_R-1}} \left[\frac{1+x^2}{1-x} - \frac{r_R}{2(1-x)} \right] \arctan \sqrt{r_R-1} \right]_{+} & 0 < x < 1 \\ \left[\frac{1+x^2}{1-x} \ln \frac{x-1}{x} + \frac{2}{\sqrt{r_R-1}} \left[\frac{1+x^2}{1-x} - \frac{r_R}{2(1-x)} \right] \arctan \frac{\sqrt{r_R-1}}{2x-1} - \frac{r_R}{4x(x-1)+r_R} \right]_{\oplus} & x < 0 \\ &+ \frac{\alpha_s C_F}{2\pi} (4\zeta) \left\{ h(x,r_R) - |\eta| h(1+\eta(x-1),r_R) \right\}. \end{split}$$

• Unregulated divergence in the $\delta(1-x)$ part? No!

 $\lim_{|x|\to\infty} \tilde{q}_{\rm OM}^{(1)}(x,p^z,p_R^z,-p^2,\mu_R) \sim \frac{1}{x^2},$ integrable at infinity, no need to regularize!

Lattice PDF Workshop, Maryland

4/6/18

Matching coefficient

• Matching coefficient for isovector quasi-PDF in quark:

$$C^{OM}\left(\xi, \frac{\mu_R}{p_R^z}, \frac{\mu}{p^z}, \frac{p^z}{p_R^z}\right) - \delta(1-\xi) \qquad \underbrace{\xi = \frac{x}{y}}$$

$$(40)$$

$$= \frac{\alpha_s C_F}{2\pi} \begin{cases} \left[\frac{1+\xi^2}{1-\xi} \ln\frac{\xi}{\xi-1} - \frac{2(1+\xi^2) - r_R}{(1-\xi)\sqrt{r_R-1}} \arctan\frac{\sqrt{r_R-1}}{2\xi-1} + \frac{r_R}{4\xi(\xi-1) + r_R}\right]_{\oplus} & \xi > 1 \\ \left[\frac{1+\xi^2}{1-\xi} \ln\frac{4(p^z)^2}{\mu^2} + \frac{1+\xi^2}{1-\xi} \ln\left[\xi(1-\xi)\right] + (2-\xi) - \frac{2\arctan\sqrt{r_R-1}}{\sqrt{r_R-1}} \left\{\frac{1+\xi^2}{1-\xi} - \frac{r_R}{2(1-\xi)}\right\}\right]_+ & 0 < \xi < 1 \\ \left[\frac{1+\xi^2}{1-\xi} \ln\frac{\xi-1}{\xi} + \frac{2}{\sqrt{r_R-1}} \left[\frac{1+\xi^2}{1-\xi} - \frac{r_R}{2(1-\xi)}\right] \arctan\frac{\sqrt{r_R-1}}{2\xi-1} - \frac{r_R}{4\xi(\xi-1) + r_R}\right]_{\ominus} & \xi < 0 \\ + \frac{\alpha_s C_F}{2\pi} \left\{h(\xi, r_R) - |\eta| h(1+\eta(\xi-1), r_R)\right\}, \end{cases}$$

Matching coefficient for isovector nucleon quasi-PDF

$$p^z \rightarrow y P^z, \ \eta = y P^z / p_R^z$$

RI/MOM matching also preserves particle number conservation of the nucleon PDF!

Comparison to two-step matching procedure

RI/MOM renormalization in coordinate space

Converting RI/MOM to MSbar scheme

Fourier Transform to obtain *x*distribution of quasi-PDF in the MSbar scheme

Matching MSbar quasi-PDF to MSbar PDF

M. Constantinou and H. Panagopoulos, 2017; J. Green, K. Jansen, and F. Steffens, 2017; C. Alexandrou et al., 2017, 2018. RI/MOM renormalization in coordinate space

Fourier Transform to obtain *x*distribution of quasi-PDF in the RI/MOM scheme

Matching RI/MOM quasi-PDF to MSbar PDF

Stewart and Zhao, 2017; J.W. Chen et al. (LP3), 2017, 2018.

Other schemes

Transverse momentum cut-off scheme (Xiong, Ji, Zhang, and Y.Z., 2014):

MSbar scheme: gives convergent matching integrals (Izubuchi, Ji, Jin, Stewart and Y.Z., 2018)

$$C^{\overline{\mathrm{MS}}}\left(\xi,\frac{\mu}{|y|P^{z}}\right) = \delta\left(1-\xi\right) + \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left(\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{\xi-1}+1+\frac{3}{2\xi}\right)_{(+(1))}^{[1,\infty]} - \frac{3}{2\xi} & \xi > 1\\ \left(\frac{1+\xi^{2}}{1-\xi}\left[-\ln\frac{\mu^{2}}{y^{2}P_{z}^{2}}+\ln\left(4\xi(1-\xi)\right)\right] - \frac{\xi(1+\xi)}{1-\xi}\right)_{(+(1))}^{[0,1]} & 0 < \xi < 1\\ \left(-\frac{1+\xi^{2}}{1-\xi}\ln\frac{-\xi}{1-\xi}-1+\frac{3}{2(1-\xi)}\right)_{(+(1))}^{[-\infty,0]} - \frac{3}{2(1-\xi)} & \xi < 0\\ + \frac{\alpha_{s}C_{F}}{2\pi}\delta(1-\xi)\left(\frac{3}{2}\ln\frac{\mu^{2}}{4y^{2}P_{z}^{2}}+\frac{5}{2}\right). \end{cases}$$
Plus functions with δ -function

Other schemes

Transverse momentum cut-off scheme (Xiong, Ji, Zhang, and Y.Z., 2014): $C^{\Lambda_{T}}\left(\xi, \frac{\mu}{p^{z}}, \frac{\Lambda}{P^{z}}\right) = \delta(1-\xi)$ $+ \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left[\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi}{p^{2}}+1+\xi^{2}}{1-\xi}\ln\xi(1-\xi)+1-\frac{2\xi}{1-\xi}+\frac{1}{(1-\xi)^{2}}\frac{\Lambda_{T}}{P^{z}}\right]_{\oplus} & \xi > 1 \\ \left[\frac{1+\xi^{2}}{1-\xi}\ln\frac{4(p^{z})^{2}}{\mu^{2}}+\frac{1+\xi^{2}}{1-\xi}\ln\xi(1-\xi)+1-\frac{2\xi}{1-\xi}+\frac{1}{(1-\xi)^{2}}\frac{\Lambda_{T}}{P^{z}}\right]_{+} & 0 < \xi < 1 \\ \left[\frac{1+\xi^{2}}{1-\xi}\ln\frac{\xi-1}{\xi}-1+\frac{1}{(1-\xi)^{2}}\frac{\Lambda_{T}}{P^{z}}\right]_{\oplus} & \xi < 0 \end{cases}$

MSbar scheme: gives convergent matching integrals (Izubuchi, Ji, Jin, Stewart and Y.Z., 2018)

Lattice PDF Workshop, Maryland

4/6/18

Outline

PDF from lattice QCD through LaMET

Nonperturbative renormalization of the quasi PDF

• Match quasi RI/MOM PDF to MSbar PDF

Numerical results

Numerical results

• Take the iso-vector parton distribution f_{u-d} as example:

$$f_{u-d}(x,\mu) = f_u(x,\mu) - f_d(x,\mu) - f_{\bar{u}}(-x,\mu) + f_{\bar{d}}(-x,\mu) ,$$

$$f_{\bar{u}}(-x,\mu) = -f_{\bar{u}}(x,\mu)$$
, $f_{\bar{d}}(-x,\mu) = -f_{\bar{d}}(x,\mu)$.

• Input:

o "MSTW 2008" PDF

• NLO $\alpha_s(\mu)$

Matching integral

$$\tilde{q}_{\rm OM}^{(1)}(x, P^z, p_R^z, \mu_R) = \int_{-1}^{1} \frac{dy}{|y|} C^{\rm OM}(\frac{x}{y}, \frac{\mu_R}{p_R^z}, \frac{\mu}{yP^z}, \frac{yP^z}{p_R^z}) f_{u-d}(y, \mu)$$

Four UV scales involved. Dependence on these scales introduces systematic uncertainty in the lattice calculation of PDF;

No singularities or divergences in MSbar or RI/MOM matching.

Variation of factorization scale μ

Variation of RI/MOM scales μ_R , p_R^z

Variation of nucleon momentum P^z

Other schemes

Xiong, Ji, Zhang, Zhao, 2014;

Recall unregulated UV divergence when $x/y \rightarrow \infty$, and $y/x \rightarrow \infty$, use a hard cut-off $y_{cut} = 10^{\pm n}$.

Izubuchi, Ji, Jin, Stewart and Y.Z., 2018

Lattice PDF Workshop, Maryland

4/6/18

Scale dependence of the matching correction

- Dependence of μ and P^z follow the Altarelli-Parisi equation, whose solution is known so we can resum the large logarithms of μ/P^z ;
- Dependence of μ_R , p_R^z is more complicated, and is scheme dependent. Large terms in one-loop correction could be resummed with a "renormalization group equation" (RGE),

$$\frac{d\tilde{q}(z, P^z, p_R^z, \mu_R)}{d\ln\mu_R} = \tilde{\gamma}(z, p_R^z, \mu_R) \,\tilde{q}(z, P^z, p_R^z, \mu_R) \,,$$

- It is simpler to make good choices of scales;
- The final result of the PDF from lattice calculation should be independent of the intermediate scales P^z , μ_R , p_R^z . Two-loop matching would be useful to test these perturbative uncertainties.

Summary

- The implementation of the RI/MOM scheme on the nonperturbative renormalization of the quasi PDF in lattice QCD is discussed;
- The one step matching for RI/MOM quasi-PDF preserves vector current conservation, and leads to convergent matching integrals.
- Scale dependence of the matching correction introduces systematic uncertainty. RGE and NNLO calculation can be useful for high precision calculations.

MSbar treatment

• Bare quasi-PDF:

$$\begin{split} \tilde{q}^{(1)}(x, p^{z}, \epsilon) = & \frac{\alpha_{s} C_{F}}{2\pi} \left\{ \frac{3}{2} \left(\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{\epsilon_{\text{IR}}} \right) \delta(1-x) + \frac{\Gamma(\epsilon + \frac{1}{2}) e^{\epsilon \gamma_{E}}}{\sqrt{\pi}} \frac{\mu^{2\epsilon}}{p_{z}^{2\epsilon}} \frac{1-\epsilon}{\epsilon_{\text{IR}}(1-2\epsilon)} \right. \\ & \left. \times \left[|x|^{-1-2\epsilon} \left(1 + x + \frac{x}{2}(x-1+2\epsilon) \right) - |1-x|^{-1-2\epsilon} \left(x + \frac{1}{2}(1-x)^{2} \right) + I_{3}(x) \right] \right\} \end{split}$$

$$I_3(x) = \theta(x-1) \left(\frac{x^{-1-2\epsilon}}{x-1}\right)_{+(1)}^{[1,\infty]} - \theta(x)\theta(1-x) \left(\frac{x^{-1-2\epsilon}}{1-x}\right)_{+(1)}^{[0,1]} - \delta(1-x)\pi\csc(2\pi\epsilon) + \theta(-x)\frac{|x|^{-1-2\epsilon}}{x-1}$$

$$\int_{0}^{\infty} \frac{dx}{x^{1+\epsilon}} = \frac{1}{\epsilon_{\rm UV}} - \frac{1}{\epsilon_{\rm IR}} \cdot \begin{bmatrix} \frac{\theta(x)}{x^{1+\epsilon}} = \left[-\frac{1}{\epsilon_{\rm IR}} \delta(x) + \frac{1}{\epsilon_{\rm UV}} \frac{1}{x^2} \delta^+ \left(\frac{1}{x}\right) \right] \\ + \left(\frac{1}{x} \right)_{+(0)}^{[0,1]} + \left(\frac{1}{x} \right)_{+(\infty)}^{[1,\infty]} & \text{Plus functions with } \delta\text{-function at} \\ + \left(\frac{1}{x} \right)_{+(0)}^{[0,1]} + \left(\frac{1}{x} \right)_{+(\infty)}^{[1,\infty]} & x = \pm \infty, \text{ consistent with DimReg.} \\ - \epsilon \left[\left(\frac{\ln x}{x} \right)_{+(0)}^{[0,1]} + \left(\frac{\ln x}{x} \right)_{+(\infty)}^{[1,\infty]} \right] + O(\epsilon^2) \end{bmatrix}$$

MSbar treatment

• Renormalized quasi-PDF:

$$\begin{split} \delta \tilde{q}^{\prime(1)}(x,\mu/|p^{z}|,\epsilon_{\rm UV}) &= \frac{\alpha_{s}C_{F}}{2\pi} \frac{3}{2\epsilon_{\rm UV}} \delta(1-x) \,, \\ \tilde{q}^{\prime(1)}(x,\mu/|p^{z}|,\epsilon_{\rm IR}) &= \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left(\frac{1+x^{2}}{1-x}\ln\frac{x}{x-1}+1+\frac{3}{2x}\right)_{+(1)}^{[1,\infty]} - \left(\frac{3}{2x}\right)_{+(\infty)}^{[1,\infty]} & x > 1 \\ \left(\frac{1+x^{2}}{1-x}\left[-\frac{1}{\epsilon_{\rm IR}}-\ln\frac{\mu^{2}}{4p_{z}^{2}}+\ln\left(x(1-x)\right)\right] - \frac{x(1+x)}{1-x}\right)_{+(1)}^{[0,1]} & 0 < x < 1 \\ \left(-\frac{1+x^{2}}{1-x}\ln\frac{-x}{1-x}-1+\frac{3}{2(1-x)}\right)_{+(1)}^{[-\infty,0]} - \left(\frac{3}{2(1-x)}\right)_{+(-\infty)}^{[-\infty,0]} & x < 0 \\ + \frac{\alpha_{s}C_{F}}{2\pi} \left[\delta(1-x)\left(\frac{3}{2}\ln\frac{\mu^{2}}{4p_{z}^{2}}+\frac{5}{2}\right) + \frac{3}{2}\gamma_{E}\left(\frac{1}{(x-1)^{2}}\delta^{+}(\frac{1}{x-1}) + \frac{1}{(1-x)^{2}}\delta^{+}(\frac{1}{1-x})\right)\right] \end{split}$$

O Plus functions with δ-function at x=±∞ needed for V.C.C..

Lattice PDF Workshop, Maryland

4/6/18

ETMC's matching which has V.C.C.

• Corresponds to a modified MSbar quasi-PDF of quark

$$\tilde{q}^{(1)}(x,\mu/|p^{z}|,\epsilon_{\mathrm{IR}}) = \frac{\alpha_{s}C_{F}}{2\pi} \begin{cases} \left(\frac{1+x^{2}}{1-x}\ln\frac{x}{x-1}+1+\frac{3}{2x}\right)_{+(1)}^{[1,\infty]} - \left(\frac{3}{2x}\right)_{+(\infty)}^{[1,\infty]} & x > 1\\ \left(\frac{1+x^{2}}{1-x}\left[-\frac{1}{\epsilon_{\mathrm{IR}}}-\ln\frac{\mu^{2}}{4p_{z}^{2}}+\ln\left(x(1-x)\right)\right] - \frac{x(1+x)}{1-x}\right)_{+(1)}^{[0,1]} & 0 < x < 1\\ \left(-\frac{1+x^{2}}{1-x}\ln\frac{-x}{1-x}-1+\frac{3}{2(1-x)}\right)_{+(1)}^{[-\infty,0]} - \left(\frac{3}{2(1-x)}\right)_{+(-\infty)}^{[-\infty,0]} & x < 0\\ + \frac{\alpha_{s}C_{F}}{2\pi}\left[\delta(1-x)-\frac{1}{2}\frac{1}{x^{2}}\delta^{+}\left(\frac{1}{x}\right) - \frac{1}{2}\frac{1}{(1-x)^{2}}\delta^{+}\left(\frac{1}{1-x}\right)\right]\left(\frac{3}{2}\ln\frac{\mu^{2}}{4p_{z}^{2}}+\frac{5}{2}\right). \end{cases}$$

C. Alexandrou et al., 2018

Ratios

A. Radyushkin, 2017;Zhang, Chen and Monahan, 2018; Izubuchi, Ji, Jin, Stewart and Y.Z., 2018

• Ratio of the quasi-PDF in quark in coordinate space:

$$\begin{split} \tilde{Q}^{(1)}(\zeta, z^2, \mu, \epsilon_{\rm IR}) &= \frac{\alpha_s C_F}{2\pi} \Biggl\{ \frac{3}{2} \Bigl(\ln \frac{\mu^2 z^2 e^{2\gamma_E}}{4} + 1 \Bigr) e^{-i\zeta} + \Bigl(-\frac{1}{\epsilon_{\rm IR}} - \ln \frac{z^2 \mu^2 e^{2\gamma_E}}{4} - 1 \Bigr) h(\zeta) + \frac{2(1 - i\zeta - e^{-i\zeta})}{\zeta^2} \\ \zeta &= z p^z + 4i \zeta e^{-i\zeta} \,_3 F_3(1, 1, 1, 2, 2, 2, i\zeta) \Biggr\}. \end{split}$$

$$\tilde{Q}(0,z^2,\mu) = \frac{\alpha_s C_F}{2\pi} \cdot \left(\frac{3}{2} \ln \frac{\mu^2 z^2 e^{2\gamma_E}}{4} + 1\right)$$

$$\lim_{z\to 0} \frac{\tilde{Q}(zp^z, z^2, \mu, \varepsilon_{IR})}{\tilde{Q}(0, z^2, \mu, \varepsilon_{IR})} \sim z^n \ln(z^2) \rightarrow 0$$

- F.T. of the ratio should be similar to the ETMC matching coefficient.
- Can treat $\[Q(0, z^2, \mu^2) \]$ as additional renormalization constant for small |z|: modify both the RI/MOM to MSbar conversion factor for the quasi-PDF, and the matching.