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Parton Distribution Function 

  Definition of PDFs in QCD factorization theorems: 

 

•  Gauge-invariant and boost-invariant light-cone correlation; 
•  In the light-cone gauge A+=0, has a clear interpretation as parton 

number density; 
•  Not directly calculable from lattice QCD due to real-time 

dependence of the light-cone. 

		
q(x ,µ)= dξ−

4π∫ e-ixP
+ξ−

Pψ (ξ− )γ +U(ξ− ,0)ψ (0) P

		
U(ξ− ,0)= Pexp −ig dη−A+(η− )

0

ξ−

∫⎡
⎣⎢

⎤
⎦⎥		ξ

± = (t ± z)/ 2

		
σ = fa(x1)⊗ fb(x2)⊗σ ab

a ,b
∑
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Large momentum effective theory 

  Quasi-PDF: 

ξ− 

ξ3 = z l -l 

√2γl 

−√2γl 

ξ+ 
ξ0 = t •  Equal-time correlation along the z 

direction, calculable in lattice QCD 
when Pz<<a-1, dependent of Pz; 

•  Under an infinite Lorentz boost along 
the z direction, the spatial gauge link 
approaches the light-cone direction, and 
the quasi-PDF reduces to the (light-cone) 
PDF. 

		 
!q(x ,Pz , !µ)= dz

4π∫ eixP
zz Pψ (z)γ zU(z ,0)ψ (0) P

		
U(z ,0)= Pexp −ig dz 'Az(z ')

0

z

∫⎡
⎣⎢

⎤
⎦⎥

		z
µ = (0,0,0,z)

X. Ji, PRL 2013; Sci.China Phys.Mech.Astron. 2014.
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Large momentum effective theory 

  Taking the Pz—>∞ limit of the quasi-PDF is ill-defined 
due to the latter’s nontrivial dependence of Pz,  

  The (renormalized) quasi PDF is related to the PDF 
through a factorization formula: 

 
  They have the same IR divergences; 

  C factor matches their UV difference, and can be 
calculated in perturbative QCD; 

  Higher-twist corrections suppressed by powers of Pz. 
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such as MS, a momentum-subtraction scheme etc., and
µ̃ is a renormalization scale for the quasi-PDF (whose
definition also depends on the scheme X). Fourier
transforming to momentum space as in Eq. (4), the
renormalization for the quasi-PDF involves a convolution
in the momentum fraction,

q̃i(x, P
z
, ✏) =P

z

Z
+1

�1
dx

0
Z̃

X
i (x�x

0
, P

z
, ✏, µ̃) q̃Xi (x0

, P
z
, µ̃) .

(7)

The structure of the renormalization of the quasi-PDF
in Eqs. (6) and (7) is similar to that of the quark beam-
function [11, 12], which is a proton distribution with sep-
arations along both the plus and minus light-cone di-
rections. Ref. [12] gives an all orders proof of the po-
sition space multiplicative renormalization of the beam
function, and this proof also implied that Zij / �ij , so
there is never parton mixing in this case. In dimen-
sional regularization it has been explicitly demonstrated
that the quasi-PDF is multiplicatively renormalized to
two loops [13]. Recently a proof of the multiplicative
renormalization has been given both non-perturbatively
in Ref. [14] and diagrammatically in Ref. [15]. The mul-
tiplicative renormalization property present in Eq. (6)
essentially follows from the known renormalization struc-
ture of QCD and of Wilson lines. Ref. [15] has also
demonstrated that there is no flavor mixing in the renor-
malization of the quasi-PDF.

For a nucleon moving with finite but large momen-
tum P

z
� ⇤QCD, the quasi-PDF can be matched onto

the PDF through a momentum space factorization for-
mula [10, 16]:1

q̃
X
i (x, P z

, µ̃) =

Z
+1

�1

dy

|y|
C

X
ij

✓
x

y
,
µ̃

P z
,

µ

|y|P z

◆
qj(y, µ)

+O

✓
M

2

P 2
z

,
⇤2

QCD

P 2
z

◆
, (8)

where Cij is the matching coe�cient, and the
O(M2

/P
2
z ,⇤

2

QCD
/P

2
z ) terms are higher-twist corrections

suppressed by the nucleon momentum (M is the nucleon
mass). Here qj(y, µ) for negative y corresponds to the
anti-quark contribution. Note that the matching coe�-
cient depends on the quasi-PDF scheme choice X, and
that for qj(y, µ) we always assume the MS scheme. Both
sides of Eq. (8) are formally µ independent, but both do
depend on the scale µ̃ for the renormalized quasi-PDF,
and this dependence need not be small. The indicated
power corrections are related to higher-twist contribu-
tions in the quasi-PDF. Note that it is important to dis-
tinguish between the renormalization of the PDF and

1 In this formula we write µ/|y|Pz for the third argument of the
matching coe�cient. This has recently been proven to be the
correct result in Ref. [17].

quasi-PDF given by the Zijs and Z̃ijs, and the match-
ing coe�cients given by the Cijs. The renormalization
constants occur in a relation between bare and renor-
malized matrix elements for the same operators. On the
other hand the matching coe�cients occur in a relation
between renormalized matrix elements of di↵erent opera-
tors. The q̃ and q have the same infrared (IR) divergences
(which are collinear divergences in Minkowski space), and
at perturbative scales µ and µ̃ the Cijs can be calculated
order by order in ↵s.
Based on Ji’s proposal, the procedure of calculating

PDF from lattice QCD can be summarized as:

1. Lattice simulation of the quasi-PDF;

2. Renormalization of the quasi-PDF in a particular
scheme on the lattice;

3. Subtraction of higher-twist corrections;

4. Matching quasi-PDF in the particular scheme to
PDF in the MS scheme.

E↵orts have been made to use this proposal to calculate
the iso-vector quark distributions fu�d, including unpo-
larized, polarized, and transversity distributions, as well
as pion distribution amplitude, from lattice QCD [18–
25]. For this channel the mixing is not important and
so the indicies i and j are dropped. The one-loop
matching coe�cients were first calculated in a trans-
verse momentum cuto↵ scheme in Ref. [26], which we
denote as C

⇤T (x,⇤T /P
z
, µ/p

z). The result was con-
firmed in Refs. [19, 27]. The nucleon-mass corrections
of O(M2

/P
2
z ) have already been included in the lattice

calculations [18–22, 24, 25], and the O(⇤2

QCD
/P

2
z ) correc-

tion was numerically fitted in Ref. [20]. (A direct lattice
calculation of the O(⇤2

QCD
/P

2
z ) correction is still desired

from the theoretical point of view). In the analyses of
Refs [18–21] the renormalization of the lattice matrix el-
ement of quasi-PDF, i.e., Step 2, was absent. With in-
creasing nucleon momentum P

z, lattice renormalization
will be a key factor that limits the precision of the calcu-
lation of PDFs. Recently, renormalization of the quasi-
PDF has been considered Refs [14, 22–25, 28–32].In other
recent work, a related pseudo-PDF distribution was de-
fined [33], which has been studied in [34].
One of the standard methods to renormalize operators

in lattice QCD is lattice perturbation theory [35]. The
perturbative renormalization of the quasi-PDF at one-
loop order has recently become available for the Wilson-
Clover action [30, 31]. In practice, it requires a significant
amount of work to compute lattice Feynman diagrams for
the quasi-PDF, which limits the ability to go to higher
loop orders, and thus the precision that can be achieved.
Moreover, fixed-order perturbative renormalization is not
reliable when the operator su↵ers from power divergences
under lattice regularization. An alternative is nonpertur-
bative methods, such as the regularization-invariant mo-
mentum subtraction (RI/MOM) scheme, that has been
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Procedure of Systematic Calculation 
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on the scheme). Fourier transforming to momentum space as in Eq. (3), the renormalization for the quasi-PDF
involves a convolution in the momentum fraction,

q̃
B
i (x, P z

, ✏) =
X

j

P
z

Z
+1

�1
dx

0
Z̃ij (x� x

0
, ✏, µ̃) q̃j(x

0
, P

z
, µ̃) . (5)

The structure of the renormalization of the quasi-PDF in Eqs. (4) and (5) is similar to that of the quark beam-
function [11, 12], which is a proton distribution with separations along both the plus and minus light-cone directions.
Ref. [12] gives an all orders proof of the position space multiplicative renormalization of the beam function, and this
proof also implied that there is never parton mixing in this case. Since this lack of mixing has not yet been explored
for the quasi-PDF’s renormalization, we included a

P
j in our Eqs. (4) and (5), where j sums over quarks and gluons.

For a nucleon moving with finite but large momentum P
z
� ⇤QCD, the quasi PDF can be matched onto the PDF

through a momentum space factorization formula [10, 13]:

q̃i(x, P
z
, µ̃) =

Z
+1

�1

dy

|y|
Cij

✓
x

y
,
µ̃

P z
,
µ

P z

◆
qj(y, µ) +O

✓
M

2

P 2
z

,
⇤2

QCD

P 2
z

◆
, (6)

where Cij is the matching coe�cient, and the O(M2
/P

2
z ,⇤

2

QCD
/P

2
z ) terms are higher-twist corrections suppressed

by the nucleon momentum (M is the nucleon mass). Here qj(y, µ) for negative y corresponds to the anti-quark
contribution. The power corrections are related to higher-twist contributions in the quasi PDF. Note that it is
important to distinguish between the renormalization of the PDF and quasi-PDF given by the Zijs and the matching
given by the Cijs. The renormalization constants occur in a relation between bare and renormalized matrix elements
for the same operators. On the other hand the matching coe�cients occur in a relation between renormalized matrix
elements of di↵erent operators. The q̃ and q have the same collinear and infrared (IR) divergences, so at perturbative
scales µ and µ̃ the Cijs can be calculated order by order in ↵s.

Based on Ji’s proposal, the procedure of calculating PDF from lattice QCD can be summarized as:

1. Lattice simulation of the quasi PDF;

2. Renormalization of the quasi PDF in a particular scheme on the lattice;

3. Subtraction of higher-twist corrections;

4. Matching quasi PDF in the particular scheme to PDF in the MS scheme.

E↵orts have been made to calculate the iso-vector quark distributions fu�d, including unpolarized, polarized, and
transversity distributions, from lattice QCD [14–17]. The one-loop matching coe�cients was first calculated in the
continuum theory [18] and confirmed in Refs. [15, 19]. The nucleon-mass corrections of O(M2

/P
2
z ) have already

been included in the lattice calculations [14–17], and the O(⇤2

QCD
/P

2
z ) correction was numerically fit in Ref. [16]. (A

direct lattice calculation of the O(⇤2

QCD
/P

2
z ) correction is still desired from the theoretical point of view). So far the

renormalization of the lattice matrix element of quasi PDF, i.e., Step 2, is absent in the analyses of Refs [14–17]. With
increasing nucleon momentum P

z, the latter will be the most important factor that limits the precision of lattice
calculation of PDFs.

One of the standard methods to renormalize operators in lattice QCD is the lattice perturbation theory [20]. In
practice, it requires a tedious amount of work to compute lattice Feynman diagrams for quasi PDF and limits our
ability to go to higher loop orders. An alternative is nonperturbative methods, such as the regularization-invariant
momentum subtraction (RI/MOM) scheme, that has been widely used to renormalize local operators on the lattice [21].
Work in progress to calculate the lattice quasi-PDFs in the RI/MOM scheme has been reported in [22], and appears
to be the most promising route for future higher precision quasi-PDF determinations.

In this paper we focus on the implementation of Step 4 when the lattice quasi PDF is defined in the RI/MOM
scheme. In particular we carry out a perturbative calculation of the matching coe�cient C that directly enables
this lattice quasi PDF to be directly matched onto the MS PDF. The renormalized matrix elements in the RI/MOM
scheme are independent of the UV regularization, so we carry out this matching perturbatively with dimensional
regularization.

An alternative to the approach we take here would be to convert the lattice quasi PDF defined with nonperturbative
renormalization in the RI/MOM scheme back to the MS scheme perturbatively. This would then allow the MS
matching result for C in Ref. [18] to be used. Our approach is simpler and more direct, with only a single step
involving a perturbative calculation. Nevertheless it would be interesting to compare both approaches. is

(I still need to edit this paragraph: –is) In Section II we elaborate on the procedure of implementing the
RI/MOM scheme for quasi PDF; In Section III we provide result of one-loop matching coe�cient between quasi PDF
in the RI/MOM scheme and PDF in the MS scheme; We conclude in Section V.

1. Simulation of the quasi PDF 
in lattice QCD 

2. Renormalization of the lattice 
quasi PDF, and then taking the 
continuum limit 

3. Subtraction of higher 
twist corrections 

4. Matching to the MSbar PDF. 

4/6/18 
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Renormalization 

  The gauge-invariant quark Wilson line operator can be 
renormalized multiplicatively in the coordinate space: 

  Different renormalization schemes can be converted to each 
other in coordinate space; 

  We can implement a nonperturbative renormalization 
scheme on the lattice. 

		 
!OΓ(z)=ψ (z)ΓW(z ,0)ψ (0)= Zψ ,ze

−δm|z| ψ (z)ΓW(z ,0)ψ (0)( )R
X. Ji, J.-H. Zhang, and Y.Z., 2017; J. Green, K. Jansen, and F. Steffens, 2017; 
T. Ishikawa, Y.-Q. Ma, J. Qiu, S. Yoshida, 2017. 
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Our result for CMS with � = �z agrees with Ref. [26], up to our di↵erent treatment of the UV divergences of the
quasi-PDF at x = ±1 in MS which leads to the presence of plus-functions and �-functions at ⇠ = ±1 in Eq. (64).
In Ref. [26], the logarithmic UV divergent behavior ⇠ 1/x of the quasi-PDF at x = ±1 appeared in the x = 1 plus-
function (corresponding to canceling the two 3/(2⇠) and 3/(2(1� ⇠)) terms that appear in di↵erent plus functions in
Eq. (64)). Here these divergences were subtracted in MS yielding the plus functions and �-functions at ⇠ = ±1. We
will see in Sec. V that the correct result in Eq. (67) leads to convergent convolution integrals, in contrast with the
MS result of Ref. [26].

Since the renormalized pseudo-PDF and quasi-PDF satisfy the relation in Eq. (32) by definition, C (⇠, µ/(|y|P z))
and C(↵, z2µ2) that are given by Eqs. (61, 64) automatically satisfy the relation in Eq. (33). This concludes our
discussion of the equivalence between the quasi-PDF and pseudo-PDF at one-loop order.

IV. OTHER RENORMALIZATION SCHEMES

Although we derive the above matching formula as-
suming that the quasi-PDF is renormalized in the MS
scheme, this is not a limitation to our result. Since
the gauge-invariant Wilson line operator Õ�(z) has been
proven to be multiplicatively renormalizable in the co-
ordinate space [46, 47], one can convert Q̃�(z) from
any other scheme to the MS scheme before using the
above factorization formula. The renormalization of
the quasi-PDF has been studied in many recent pa-
pers [26, 28, 33, 34, 51, 55–59]. We will discuss some
of these results and show how they can be incorporated
into the factorization formula in Eq. (27).

The MS scheme is convenient for our discussion of the
OPE as it guarantees Lorentz and gauge invariances, but
it is not practical for lattice renormalization. Since the
lattice theory has a natural UV cut-o↵ 1/a with a being
the lattice spacing, the unrenormalized Io↵e-time distri-
bution Q̃ inherits the power divergence from the Wilson
line self-energy according to Eq. (13). For an arbitrary
scheme X, the renormalized Io↵e-time distribution

Q̃X(⇣, z2µ2

R) = lim
a!0

Z�1

X (z2µ2

R, a
2µ2

R) Q̃(⇣, z2/a2) (69)

should be free of all the UV divergences and have a well-
defined continuum limit as a ! 0. This continuum limit,
in particular, is independent of the UV regulator, so

lim
a!0

Z�1

X (z2µ2

R, a
2µ2

R)Q̃(⇣, z2/a2)

= Z�1

X (z2µ2

R, ✏)Q̃(⇣, z2, ✏) . (70)

As a result, we can relate Q̃X(⇣, z2µ2

R) to the MS scheme
by the conversion

Q̃X(⇣, z2µ2

R) =
Z
MS

(✏, µ)

ZX(z2µ2

R, ✏)
Q̃MS(⇣, z2µ2)

=Z 0
X(z2µ2

R, µ
2

R/µ
2) Q̃MS(⇣, z2µ2) , (71)

where the regulator ✏ dependence is completely canceled
out between Z

MS
and ZX . The ratio Z 0

X can be calcu-
lated perturbatively in QCD, which was done in [51] for
several lattice schemes and the RI/MOM scheme. Thus
the factorization theorem we have proven in Sec. II still
applies to Q̃X with a slight modification to the coe�cient

function,

Q̃X(⇣, z2µ2

R) =

Z
1

�1

d↵ C
X(↵, µ2

R/µ
2, µ2z2)Q(↵⇣, µ) ,

(72)

where the matching coe�cient for the schemeX is related
to that of MS by

C
X(↵, µ2

R/µ
2, µ2z2) = Z 0

X(z2µ2

R, µ
2

R/µ
2) C(↵, µ2z2) .

(73)

For the pseudo-PDF the modified result also involves this
same coe�cient

P
X(x, z2µ2

R) =

Z
1

|x|

dy

|y|
C
X
⇣x
y
,
µ2

R

µ2
, µ2z2

⌘
q(y, µ) (74)

+

Z �|x|

�1

dy

|y|
C
X
⇣x
y
,
µ2

R

µ2
, µ2z2

⌘
q(y, µ) .

Meanwhile, for the quasi-PDF we have,

q̃X

✓
x,

µ2

R

P 2
z

◆
⌘

Z
d⇣

2⇡
eix⇣ Q̃X

✓
⇣,

µ2⇣2

P 2
z

◆

=

Z
1

�1

dy

|y|
CX

⇣x
y
,
µR

µ
,

µ

|y|P z

⌘
q(y, µ) .

(75)

Here the modified coe�cient for the X scheme is related
to coe�cient in the MS scheme by

CX
⇣x
y
,
µR

µ
,

µ

|y|P z

⌘
(76)

=

Z
d⌘ Z̄ 0

X

⇣
⌘2,

µ2

R

µ2

⌘
C
⇣x
y
�

⌘

|y|

µR

P z
,

µ

|y|P z

⌘
,

where here Z̄ 0
X is defined by the Fourier transform

Z̄ 0
X

✓
⌘2,

µ2

R

µ2

◆
⌘

Z
d⌧

2⇡
ei⌘⌧ Z 0

X

⇣
⌧2,

µ2

R

µ2

⌘
. (77)

Depending on the scheme X we note that slightly modi-
fied definitions of Z̄ 0

X may be more appropriate.
Besides the MS scheme, the quasi-PDF has also been

renormalized in the transverse momentum cut-o↵ [19,
24, 25, 29] and regularization-invariant momentum sub-
traction (RI/MOM) [26, 33, 34, 51, 59] schemes. The



Regulator independence 

  If we apply the same renormalization scheme in both lattice 
and continuum theories, 

  This should apply to all renormalization schemes; 

  After renormalization, we can just calculate the matching 
coefficient in DimReg; 

  However, not all schemes can be implemented 
nonperturbatively on the lattice. 
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!OΓ
R(z ,µ)= ZX−1(z ,ε ,µ) !OΓ(z ,ε )

= lim
a→0

ZX
−1(z ,a−1 ,µ) !OΓ(z ,a−1)



A momentum subtraction scheme 

  Regulator-independent momentum subtraction scheme 
(RI/MOM): 

 

 

  Can be implemented nonperturbatively on the lattice. 

  Scales in renormalization: µR, pR
z 

4/6/18 

		 

ZOM
−1 (z ,a−1 ,pRz ,µR ) p !OΓ(z ,a−1) p p2=µR

2

pz=pR
z

= p !OΓ(z) p tree

ZOM(z ,a−1 ,pRz ,µR )=
p !OΓ(z ,a−1) p p2=µR

2

pz=pR
z

p !OΓ(z) p tree

=

p !OΓ(z) p p2=µR
2

pz=pR
z

(4pRΓζ )e
− ipR

z*z

Martinelli et al., 1994 
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Nonperturbative renormalization on 
the lattice 

  For Γ=γz, we have to choose pR
z ≠ 0; for Γ=γt, 

we can choose pR
z = 0 while |p2|>>ΛQCD; 

  For nonzero pR
z, ZOM is a complex number, real part 

symmetric and imaginary part anti-symmetric; 

  Operator mixing on the lattice between OΓ and O1 at 
O(a0) (for γz) and O(a1) (for γt) due to broken chiral 
symmetry. 

4/6/18 Lattice PDF Workshop, Maryland 

		 
ZOM(z ,a−1 ,pzR ,µR )= p !OΓ(z) p p2=µR

2

pz=pz
R

/(4pRΓζe
− ipR

z*z )

M. Constantinou and H. Panagopoulos, 2017; 
T. Ishikawa et al. (LP3), 2017. 
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Matching coefficient 

Strategy: 

  Extracting matching coefficient by comparing the 
quasi-PDF and light-cone PDF in an off-shell quark 
state; 

  Quark off-shellness p2<0 regulates the infrared (IR) 
and collinear divergences; 
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One-loop Feynman diagrams 

  Dimensional regularization d=4-2ε;  

Γ=γz for discussion in this talk. External momentum 
pμ=(p0,0,0,pz) and p2<0; 

  Fourier transform to the momentum space to obtain the quasi-
PDF; 

4/6/18 Lattice PDF Workshop, Maryland 
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p

k k

p

z

q̃
(1)

vertex(z)

p

k

p

z

p

k

p

z

q̃
(1)

sail(z)

p p

z

q̃
(1)

tadpole(z)

FIG. 1. One-loop Feynman diagrams for the quasi-PDF. The standard quark self energy wavefunction renormalization is also
included, and denoted q̃(1)

w.fn.(z).

For example, carrying out the z
0 integral gives

q̃
(1)

vertex
(z, pz, ✏,�p

2) + q̃
(1)

w.fn.
(z, pz, ✏,�p

2) = ⇣ p
z

Z 1

�1
dx e

�ixpzz Tr


/p

Z
d
d
k

(2⇡)d
(�igT

a
�
µ)

i

/k
�
z i

/k
(�igT

a
�
⌫)

�igµ⌫

(p� k)2

�

⇥

h
�(kz � xp

z)� �(pz � xp
z)
i
, (22)

where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
(z, pz, ✏) and q̃

(1)

tadpole
(z, pz, ✏) each also contain the same [�(kz � xp

z) � �(pz � xp
z)] factor.

For all contributions we therefore can write

p
z

Z
dk

z

Z 1

�1
dx e

�ixpzz
h
�(kz � xp

z)� �(pz � xp
z)
i
= p

z

Z 1

�1
dx

h
e
�ixpzz

� e
�ipzz

i Z
dk

z
�(kz � xp

z) , (23)

and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful

Z
1

0

dy
1

[(x� y)2 + y(1� y)⇢]1/2
=

1
p
1� ⇢

ln

✓
1� x� ⇢/2 +

p
1� ⇢|1� x|

�x+ ⇢/2 +
p
1� ⇢|x|

◆
, (24)

Z
1

0

dy
(1� y)

[(x� y)2 + y(1� y)⇢]3/2
=

2

⇢|x|

(⇢� 2|x||1� x|� 2x(1� x)

⇢� 4x(1� x)
.

We find that the sum of one-loop contributions, q̃(1) = q̃
(1)

vertex
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(1)

w.fn. + q̃
(1)

sail
+ q̃

(1)

tadpole
, for the bare quasi-PDF in

Feynman gauge is
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where the �i" allows us to easily analytically continue



One-loop Feynman diagrams 

  Feynman rules: 
  e.g. 
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For example, carrying out the z
0 integral gives
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where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
(z, pz, ✏) and q̃

(1)

tadpole
(z, pz, ✏) each also contain the same [�(kz � xp

z) � �(pz � xp
z)] factor.

For all contributions we therefore can write
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and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful
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where the �i" allows us to easily analytically continue

5

Landau-gauge result that is the most relevant for lattice
simulations.

Although in this section we carry out the matching us-
ing the o↵-shellness as an IR regulator, the result for the
matching coe�cient is independent of the choice of IR
regulator. Therefore if we carry out the calculation with
an on-shell IR regulator like dimensional regularization
we will obtain the same matching coe�cient between the
RI/MOM quasi-PDF and MS PDF. To demonstrate this
explicitly in App. B we repeat the one-loop calculation
carried out in this section using dimensional regulariza-

tion as the IR regulator.
To define the o↵-shell quark matrix element we will use

the definition in Eq. (12) (the results obtained for the
alternate definition in Eq. (13) are given in App. C). For
the quasi-PDF, we use the momentum space Feynman
rules for the coordinate space q̃(z, pz, ✏) [28]. At tree
level we obtain

q̃
(0)(z, pz) = 4pz⇣ e�izpz

. (17)

The one-loop Feynman diagrams are shown in Fig. 1.

The displayed diagrams are given by

q̃
(1)

vertex
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/p
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d
d
k

(2⇡)d
(�igT
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�
µ)

i
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�
z i
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a
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⌫)

�igµ⌫

(p� k)2

�
e
�ikzz

, (18)
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⌘
�
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a
�
⌫)

�igµ⌫

(p� k)2
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e
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�
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�
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⇣
1� e

�i(kz�pz
)z
⌘
�
µz �igµ⌫

(p� k)2

�
e
�ipzz

,

q̃
(1)

tadpole
(z, pz, ✏,�p

2) = ⇣ Tr


/p

Z
d
d
k

(2⇡)d
(�g

2)CF �
z
�
µz
�
⌫z

✓
1� e

�i(kz�pz
)z

(pz � kz)2
�

z

i(pz � kz)

◆
�igµ⌫

(p� k)2

�
e
�ipzz

,

where in addition we have a contribution from the standard one-loop quark wavefunction renormalization denoted

q̃
(1)

w.fn.(z, p
z
, ✏,�p

2).

Here CF = 4/3 and T
a is the SU(3) color matrix in

the fundamental representation. The second term in the
bracket in the last line of Eq. (18), which is proportional
z, does not contribute to the loop integral as it is odd
under the exchange of pz � k

z
! �(pz � k

z).

The quark self-energy correction is

q̃
(1)

w.fn.(z, p
z
, ✏,�p

2) = �Z q̃
(0)(z, pz) with the tree

level matrix element in Eq. (17) and �Z defined in
the on-shell scheme to avoid the need for including
residue factors when calculating S-matrix elements for
the matching. For an o↵-shell momentum regulator this
is

�Z = �
↵sCF

4⇡

✓
1

✏
+ ln

µ
2

�p2
+ 1

◆
+O(↵2

s) . (19)

However, if we follow the definition in Eq. (12) and in-
tegrate over the loop momentum with z = 0, then con-
tributions from Eq. (18) do not exactly cancel the quark
self-energy correction in Eq. (19), so the one-loop cor-
rection to the conserved local vector current is not zero.
This occurs due to the o↵-shell regulator p

2
6= 0, which

allows mixing with additional operators due to the o↵-
shellness of the external state.

When using Eq. (12), we can ensure that loop correc-
tions to the vector current cancel, by instead defining

�Z in the on-shell scheme using the Ward-Takahashi
identity:

i�µ[p, p] =
@S

�1(p)

@pµ
, �Z =

1

4pz
Tr


/p
@⌃(p)

@pz

�
,

�Z = �
↵sCF

4⇡

✓
1

✏
+ ln

µ
2

�p2
� 1

◆
+O(↵2

s) . (20)

Here �µ[p, p] and S(p) are the dressed vertex function
and quark propagator, and ⌃(p) is the quark self energy.
For more details see App. A. Since we work with o↵-
shell quarks for an IR regulator, we will use the latter
approach. However, we note that since the �Z contri-
bution is the same for the PDF and quasi-PDF that we
will in the end obtain the same result for the matching
whether we use Eq. (19) or Eq. (20).
For the matching calculation it is convenient to use the

identity

f(z) = p
z

Z 1

�1
dx e

�ixpzz

 Z 1

�1

dz
0

2⇡
e
ixpzz0

f(z0)

�
, (21)

and carry out the z0 integral to express each Feynman di-
agram as an inverse Fourier transform with respect to the
variable x. For the quasi-PDF the range of x is uncon-
strained and we obtain contributions over the full range
�1 < x < 1.

Three dimensional integration;  
Ultraviolet (UV) convergent. 

Four dimensional integration;  
UV divergent, regularized by ε. 

At bare level, which means keeping ε finite, satisfies vector current conservation (V.C.C.); 
 
In the MSbar renormalization, a careful ε expansion is needed; 
 
In the first calculation with transverse momentum cutoff (Xiong, Ji, Zhang and Y.Z., 2014), we 
took ε=0 and write quasi-PDF as a plus function to enforce V.C.C.. 

		 !q
(1)(x ,pz )= h(x ,pz )−δ(1− x) dx 'h(x ',pz )∫

		 dx 	∫ !q(1)(x ,pz ,ε ,−p2)=0

Izubuchi, Ji, Jin, Stewart and Y.Z., 2018 



One-loop results 

  One-loop bare matrix element (with V.C.C.): 

  Potential problem: 

  This logarithmic divergence is what needs to be treated carefully 
for the MSbar scheme; 

  Not a problem for the RI/MOM scheme! 
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FIG. 1. One-loop Feynman diagrams for the quasi-PDF. The standard quark self energy wavefunction renormalization is also
included, and denoted q̃(1)
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For example, carrying out the z
0 integral gives

q̃
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vertex
(z, pz, ✏,�p

2) + q̃
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, (22)

where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
(z, pz, ✏) and q̃

(1)

tadpole
(z, pz, ✏) each also contain the same [�(kz � xp

z) � �(pz � xp
z)] factor.

For all contributions we therefore can write
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and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful
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, for the bare quasi-PDF in
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and we have defined

⇢ ⌘
(�p

2
� i")

p2z

, (27)

where the �i" allows us to easily analytically continue
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FIG. 1. One-loop Feynman diagrams for the quasi-PDF. The standard quark self energy wavefunction renormalization is also
included, and denoted q̃(1)
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For example, carrying out the z
0 integral gives
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where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
(z, pz, ✏) and q̃
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(z, pz, ✏) each also contain the same [�(kz � xp
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and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful
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FIG. 1. One-loop Feynman diagrams for the quasi-PDF. The standard quark self energy wavefunction renormalization is also
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For example, carrying out the z
0 integral gives
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where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
analogous results for q̃(1)

sail
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and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
following results are useful
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where the �i" allows us to easily analytically continue
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∫ 	h(x ,ρ)	is	logarithmically	divergent	needs	ε 	to	be	regularized!
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FIG. 1. One-loop Feynman diagrams for the quasi-PDF. The standard quark self energy wavefunction renormalization is also
included, and denoted q̃(1)

w.fn.(z).
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where the di↵erence of �-functions makes it clear that this contribution vanishes in the local limit z = 0. The
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and use the �(kz � xp
z) to perform the loop integral over kz. When evaluating the loop integrals in Eq. (18), we find

that for finite x they are all UV finite and regular as ✏ ! 0. Only the vertex plus wavefunction contribution is UV
divergent as x ! ±1, but for the RI/MOM scheme these divergences are removed by the counterterm contribution,
and hence we can still carry out the calculation with ✏ = 0. We denote the bare contributions in this limit by
q̃(z, pz, 0, p2) where the p

2 has been added to indicate the IR regulator. In carrying out the required integrals the
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and we have defined
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(�p
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p2z
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where the �i" allows us to easily analytically continue

7

⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
is cured by the RI/MOM subtraction). On the other
hand, the x integral is convergent at x = 1. Here the
exp(�ip

z
z) term gives a “real” contribution with support

in �1 < x < 1, while the exp(�ip
z
z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.

By imposing the condition in Eq. (9), and writing

ZOM = 1 + Z
(1)

OM
we obtain

Z
(1)

OM
(z, pzR, 0, µR) =

q̃
(1)(z, pzR, 0,�p

2 = µ
2

R)

q̃(0)(z, pzR)
. (28)

and the additive counterterm contribution

q̃
(1)

CT
(z, pz, pzR, µR) = �Z

(1)

OM
(z, pzR, 0, µR) q̃

(0)(z, pz) .
(29)

To simplify the presentation of various formulae below
we define the dimensionless ratio

rR ⌘
µR

2

pz 2

R

. (30)

In Euclidean space, p2E = p
2
4
+ p

z 2

R � p
2
z, so the renor-

malization scale µR one can reach on the lattice by set-
ting p

2

E = µ
2

R always satisfies µ
2

R � p
z 2

R . Therefore, we

can consider q̃(1)
CT

after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme
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(1)(z, pz, 0,�p
2
⌧ p

2

z)

+ q̃
(1)

CT
(z, pz, pzR, µR) . (31)

As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p

2

small, i.e. ⇢ ⌧ 1. Thus we identify the logarithmic
IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
appear in the PDF. Also, our notation in Eq. (31) makes
clear that the momentum p

z of the state for which we
are considering the quasi-PDF in general need not be
equal to the momentum p

z
R that we use for the RI/MOM

counterterm. Defining

h0(x, ⇢) ⌘

8
>>>>>>><

>>>>>>>:

1 + x
2

1� x
ln

x

x� 1
+ 1 x > 1

1 + x
2

1� x
ln

4

⇢
�

2x

1� x
0 < x < 1

1 + x
2

1� x
ln

x� 1

x
� 1 x < 0
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the components of the renormalized quasi-PDF in the
RI/MOM scheme are

q̃
(1)(z, pz, 0,�p

2
⌧ p

2

z) =
↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
�ixpzz

� e
�ipzz

⌘
h0(x, ⇢),

q̃
(1)

CT
(z, pz, pzR, µR) = �

↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
i(1�x)pz

Rz�ipzz
� e

�ipzz
⌘
h(x, rR) , (33)

where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
sum can be written as

q̃
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. (34)

For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),
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⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
is cured by the RI/MOM subtraction). On the other
hand, the x integral is convergent at x = 1. Here the
exp(�ip

z
z) term gives a “real” contribution with support

in �1 < x < 1, while the exp(�ip
z
z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.

By imposing the condition in Eq. (9), and writing
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after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme
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As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p

2

small, i.e. ⇢ ⌧ 1. Thus we identify the logarithmic
IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
appear in the PDF. Also, our notation in Eq. (31) makes
clear that the momentum p

z of the state for which we
are considering the quasi-PDF in general need not be
equal to the momentum p

z
R that we use for the RI/MOM
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the components of the renormalized quasi-PDF in the
RI/MOM scheme are
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where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
sum can be written as
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For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),
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⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
is cured by the RI/MOM subtraction). On the other
hand, the x integral is convergent at x = 1. Here the
exp(�ip
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z) term gives a “real” contribution with support

in �1 < x < 1, while the exp(�ip
z
z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.

By imposing the condition in Eq. (9), and writing
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after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme
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As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p
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IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
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the components of the renormalized quasi-PDF in the
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where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
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For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),
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⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
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z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.
By imposing the condition in Eq. (9), and writing

ZOM = 1 + Z
(1)

OM
we obtain

Z
(1)

OM
(z, pzR, 0, µR) =

q̃
(1)(z, pzR, 0,�p

2 = µ
2

R)

q̃(0)(z, pzR)
. (28)

and the additive counterterm contribution

q̃
(1)

CT
(z, pz, pzR, µR) = �Z

(1)

OM
(z, pzR, 0, µR) q̃

(0)(z, pz) .
(29)

To simplify the presentation of various formulae below
we define the dimensionless ratio

rR ⌘
µR

2

pz 2

R

. (30)

In Euclidean space, p2E = p
2
4
+ p

z 2

R � p
2
z, so the renor-

malization scale µR one can reach on the lattice by set-
ting p

2

E = µ
2

R always satisfies µ
2

R � p
z 2

R . Therefore, we

can consider q̃(1)
CT

after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme

q̃
(1)

OM
(z, pz, pzR, µR) = q̃

(1)(z, pz, 0,�p
2
⌧ p

2

z)

+ q̃
(1)

CT
(z, pz, pzR, µR) . (31)

As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p

2

small, i.e. ⇢ ⌧ 1. Thus we identify the logarithmic
IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
appear in the PDF. Also, our notation in Eq. (31) makes
clear that the momentum p

z of the state for which we
are considering the quasi-PDF in general need not be
equal to the momentum p

z
R that we use for the RI/MOM

counterterm. Defining

h0(x, ⇢) ⌘

8
>>>>>>><

>>>>>>>:

1 + x
2

1� x
ln

x

x� 1
+ 1 x > 1

1 + x
2

1� x
ln

4

⇢
�

2x

1� x
0 < x < 1

1 + x
2

1� x
ln

x� 1

x
� 1 x < 0

, (32)

the components of the renormalized quasi-PDF in the
RI/MOM scheme are

q̃
(1)(z, pz, 0,�p

2
⌧ p

2

z) =
↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
�ixpzz

� e
�ipzz

⌘
h0(x, ⇢),

q̃
(1)

CT
(z, pz, pzR, µR) = �

↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
i(1�x)pz

Rz�ipzz
� e

�ipzz
⌘
h(x, rR) , (33)

where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
sum can be written as

q̃
(1)

OM
(z, pz, pzR, µR) =

↵sCF

2⇡
(4pz⇣)e�izpz

Z
dx

n⇣
e
i(1�x)pzz

� 1
⌘ ⇥

h0(x, ⇢)� h(x, rR)
⇤

+
⇣
e
i(1�x)pzz

� e
i(1�x)pz

Rz
⌘
h(x, rR)

o
. (34)

For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),

q̃
(1)

OM
(x, pz, pzR, µR) =

Z
dz

2⇡
e
ixzpz

q̃
(1)

OM
(z, pz, pzR, µR)

=
↵sCF

2⇡
(4⇣)

⇢Z
dy

⇥
�(y � x)� �(1� x)

⇤⇥
h0(y, ⇢)� h(y, rR)

⇤

+ h(x, rR)� |⌘|h
�
1 + ⌘(x� 1), rR

��
, (35)



RI/MOM renormalization 

  Fourier transform to obtain the x-dependent quasi-PDF: 

One can explicitly check that the RI/MOM quasi-PDF satisfies 
vector current conservation: 
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⇢ from ⇢ < 1 to ⇢ > 1. For x ! ±1 the integrand in
Eq. (25) is / 1/x and hence log-divergent (behavior that
is cured by the RI/MOM subtraction). On the other
hand, the x integral is convergent at x = 1. Here the
exp(�ip

z
z) term gives a “real” contribution with support

in �1 < x < 1, while the exp(�ip
z
z) gives a “virtual”

contribution proportional to �(1� x), and together they
provide a well defined result at x = 1. The one-loop
correction to the local vector current is exactly zero as
the above integral vanishes at z = 0.

By imposing the condition in Eq. (9), and writing

ZOM = 1 + Z
(1)

OM
we obtain

Z
(1)

OM
(z, pzR, 0, µR) =

q̃
(1)(z, pzR, 0,�p

2 = µ
2

R)

q̃(0)(z, pzR)
. (28)

and the additive counterterm contribution

q̃
(1)

CT
(z, pz, pzR, µR) = �Z

(1)

OM
(z, pzR, 0, µR) q̃

(0)(z, pz) .
(29)

To simplify the presentation of various formulae below
we define the dimensionless ratio

rR ⌘
µR

2

pz 2

R

. (30)

In Euclidean space, p2E = p
2
4
+ p

z 2

R � p
2
z, so the renor-

malization scale µR one can reach on the lattice by set-
ting p

2

E = µ
2

R always satisfies µ
2

R � p
z 2

R . Therefore, we

can consider q̃(1)
CT

after analytically continuing to the re-
gion rR > 1, which is easy to accomplish using the i" in
Eq. (27).
Together these results give the renormalized one-loop

quasi-PDF in the RI/MOM scheme

q̃
(1)

OM
(z, pz, pzR, µR) = q̃

(1)(z, pz, 0,�p
2
⌧ p

2

z)

+ q̃
(1)

CT
(z, pz, pzR, µR) . (31)

As indicated, to setup the matching of the quasi-PDF
to the PDF, we must keep our physical IR regulator p

2

small, i.e. ⇢ ⌧ 1. Thus we identify the logarithmic
IR divergences by Taylor expanding q̃

(1) in ⇢. At one-
loop order there will only be a ln ⇢ term, corresponding
to the leading logarithmic IR singularity which will also
appear in the PDF. Also, our notation in Eq. (31) makes
clear that the momentum p

z of the state for which we
are considering the quasi-PDF in general need not be
equal to the momentum p

z
R that we use for the RI/MOM

counterterm. Defining

h0(x, ⇢) ⌘

8
>>>>>>><

>>>>>>>:

1 + x
2

1� x
ln

x

x� 1
+ 1 x > 1

1 + x
2

1� x
ln

4

⇢
�

2x

1� x
0 < x < 1

1 + x
2

1� x
ln

x� 1

x
� 1 x < 0

, (32)

the components of the renormalized quasi-PDF in the
RI/MOM scheme are

q̃
(1)(z, pz, 0,�p

2
⌧ p

2

z) =
↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
�ixpzz

� e
�ipzz

⌘
h0(x, ⇢),

q̃
(1)

CT
(z, pz, pzR, µR) = �

↵sCF

2⇡
(4pz⇣)

Z 1

�1
dx

⇣
e
i(1�x)pz

Rz�ipzz
� e

�ipzz
⌘
h(x, rR) , (33)

where h(x, rR) is obtained from Eq. (26). Here the coupling ↵s = ↵s(µ) is taken to be in the standard MS scheme.
Note that the collinear divergence ln ⇢ only appears in the physical region of the PDF 0 < x < 1 through h0. The
sum can be written as

q̃
(1)

OM
(z, pz, pzR, µR) =

↵sCF

2⇡
(4pz⇣)e�izpz

Z
dx

n⇣
e
i(1�x)pzz

� 1
⌘ ⇥

h0(x, ⇢)� h(x, rR)
⇤

+
⇣
e
i(1�x)pzz

� e
i(1�x)pz

Rz
⌘
h(x, rR)

o
. (34)

For x ! ±1 the integrand for the renormalized quasi-PDF behaves as / 1/x2 and the integral converges.
The renormalized quasi-PDF in momentum space in the RI/MOM scheme is easily obtained using Eq. (34),

q̃
(1)

OM
(x, pz, pzR, µR) =

Z
dz

2⇡
e
ixzpz

q̃
(1)

OM
(z, pz, pzR, µR)

=
↵sCF

2⇡
(4⇣)

⇢Z
dy

⇥
�(y � x)� �(1� x)

⇤⇥
h0(y, ⇢)� h(y, rR)

⇤

+ h(x, rR)� |⌘|h
�
1 + ⌘(x� 1), rR

��
, (35)

dx 
−∞

∞

∫ !qOM
(1) (x, pz , pR

z ,−p2 ,µR ) =
αSCF

2π
(4ζ ) dx h(x,rR )

−∞

∞

∫ − dx |η|h(1+|η|(x −1),rR )
−∞

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥= 0

η ≡
pz

pR
z



RI/MOM renormalization 

  Full result of RI/MOM quasi-PDF: 

  Unregulated divergence in the δ(1-x) part? No! 

MSbar PDF: 
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where ⌘ ⌘ p
z
/p

z
R. For the momentum space one-loop quasi-PDF q̃

(1)

OM
(x, pz, µR) the di↵erence

⇥
�(y � x) � �(1 � x)

⇤

gives a plus-function. We therefore define the following plus functions with subtractions at y = 1

Z 1

1

dy
⇥
g(y)

⇤
�f(y) =

Z 1

1

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
1

0

dy
⇥
g(y)

⇤
+
f(y) =

Z
1

0

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
0

�1
dy

⇥
g(y)

⇤
 f(y) =

Z
0

�1
dy g(y)

⇥
f(y)� f(1)

⇤
, (36)

for arbitrary functions g(y) and f(y). The renormalized momentum space quasi-PDF in the RI/MOM scheme in
Feynman gauge is therefore

q̃
(1)

OM
(x, pz, pzR, µR) (37)

=
↵sCF

2⇡
(4⇣)

8
>>>>>>><

>>>>>>>:


1 + x

2

1� x
ln

x

x� 1
�

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

2x� 1
+

rR

4x(x� 1) + rR

�

�
x > 1


1 + x

2

1� x
ln

4(pz)2

�p2
�

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

�

+

0 < x < 1


1 + x

2

1� x
ln

x� 1

x
+

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

2x� 1
�

rR

4x(x� 1) + rR

�

 
x < 0

+
↵sCF

2⇡
(4⇣)

⇢
h(x, rR)� |⌘|h

�
1 + ⌘(x� 1), rR

��
.

Note that the last term vanishes for ⌘ = 1.
Next we consider the PDF calculated with the same o↵-shellness regulator, once again using the same identity in

Eq. (12) to uniquely define our treatment of the spinors when working o↵-shell. With this definition the renormalized
one-loop matrix element of PDF in the MS scheme is given by

q
(1)(x, µ) =

↵sCF

2⇡
(4⇣)

8
>><

>>:

0 x > 1
1 + x

2

1� x
ln

µ
2

�p2
�

1 + x
2

1� x
ln

⇥
x(1� x)

⇤
� (2� x)

�

+

0 < x < 1

0 x < 0

. (38)

Considering the factorization formula in Eq. (11), the matching coe�cient COM between the renormalized quasi-PDF
in the RI/MOM scheme and standard PDF in the MS scheme is then determined by the di↵erence between the
momentum space quasi-PDF and PDF results

C
OM

✓
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

◆
= �(1� ⇠) +

1

4⇣

h
q̃
(1)

OM
(⇠, pz, pzR, µR)� q

(1) (⇠, µ)
i
+O(↵2

s) , (39)

which gives the one-loop matching coe�cient

C
OM

✓
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

◆
� �(1� ⇠) (40)

=
↵sCF

2⇡

8
>>>>>>>>><

>>>>>>>>>:


1 + ⇠

2

1� ⇠
ln

⇠

⇠ � 1
�

2(1 + ⇠
2)� rR

(1� ⇠)
p
rR � 1

arctan

p
rR � 1

2⇠ � 1
+

rR

4⇠(⇠ � 1) + rR

�

�
⇠ > 1


1 + ⇠

2

1� ⇠
ln

4(pz)2

µ2
+

1 + ⇠
2

1� ⇠
ln
⇥
⇠(1� ⇠)

⇤
+ (2� ⇠)�

2 arctan
p
rR � 1

p
rR � 1

⇢
1 + ⇠

2

1� ⇠
�

rR

2(1� ⇠)

��

+

0 < ⇠ < 1


1 + ⇠

2

1� ⇠
ln

⇠ � 1

⇠
+

2
p
rR � 1


1 + ⇠

2

1� ⇠
�

rR

2(1� ⇠)

�
arctan

p
rR � 1

2⇠ � 1
�

rR

4⇠(⇠ � 1) + rR

�

 
⇠ < 0

+
↵sCF

2⇡

⇢
h(⇠, rR)� |⌘|h

�
1 + ⌘(⇠ � 1), rR

��
,

lim
|x|→∞
!qOM

(1) (x, pz , pR
z ,−p2 ,µR ) ~ 1

x2
,  integrable at infinity, no need to regularize! 

8

where ⌘ ⌘ p
z
/p

z
R. For the momentum space one-loop quasi-PDF q̃

(1)

OM
(x, pz, µR) the di↵erence

⇥
�(y � x) � �(1 � x)

⇤

gives a plus-function. We therefore define the following plus functions with subtractions at y = 1

Z 1

1

dy
⇥
g(y)

⇤
�f(y) =

Z 1

1

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
1

0

dy
⇥
g(y)

⇤
+
f(y) =

Z
1

0

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
0

�1
dy

⇥
g(y)

⇤
 f(y) =

Z
0

�1
dy g(y)

⇥
f(y)� f(1)

⇤
, (36)

for arbitrary functions g(y) and f(y). The renormalized momentum space quasi-PDF in the RI/MOM scheme in
Feynman gauge is therefore

q̃
(1)

OM
(x, pz, pzR, µR) (37)

=
↵sCF

2⇡
(4⇣)

8
>>>>>>><

>>>>>>>:


1 + x

2

1� x
ln

x

x� 1
�

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

2x� 1
+

rR

4x(x� 1) + rR

�

�
x > 1


1 + x

2

1� x
ln

4(pz)2

�p2
�

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

�

+

0 < x < 1


1 + x

2

1� x
ln

x� 1

x
+

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

2x� 1
�

rR

4x(x� 1) + rR

�

 
x < 0

+
↵sCF

2⇡
(4⇣)

⇢
h(x, rR)� |⌘|h

�
1 + ⌘(x� 1), rR

��
.

Note that the last term vanishes for ⌘ = 1.
Next we consider the PDF calculated with the same o↵-shellness regulator, once again using the same identity in

Eq. (12) to uniquely define our treatment of the spinors when working o↵-shell. With this definition the renormalized
one-loop matrix element of PDF in the MS scheme is given by

q
(1)(x, µ) =

↵sCF

2⇡
(4⇣)

8
>><

>>:

0 x > 1
1 + x

2

1� x
ln

µ
2

�p2
�

1 + x
2

1� x
ln

⇥
x(1� x)

⇤
� (2� x)

�

+

0 < x < 1

0 x < 0

. (38)

Considering the factorization formula in Eq. (11), the matching coe�cient COM between the renormalized quasi-PDF
in the RI/MOM scheme and standard PDF in the MS scheme is then determined by the di↵erence between the
momentum space quasi-PDF and PDF results

C
OM

✓
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

◆
= �(1� ⇠) +

1

4⇣

h
q̃
(1)

OM
(⇠, pz, pzR, µR)� q

(1) (⇠, µ)
i
+O(↵2

s) , (39)

which gives the one-loop matching coe�cient

C
OM

✓
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

◆
� �(1� ⇠) (40)

=
↵sCF

2⇡

8
>>>>>>>>><

>>>>>>>>>:


1 + ⇠

2

1� ⇠
ln

⇠

⇠ � 1
�

2(1 + ⇠
2)� rR

(1� ⇠)
p
rR � 1

arctan

p
rR � 1

2⇠ � 1
+

rR

4⇠(⇠ � 1) + rR

�

�
⇠ > 1


1 + ⇠

2

1� ⇠
ln

4(pz)2

µ2
+

1 + ⇠
2

1� ⇠
ln
⇥
⇠(1� ⇠)

⇤
+ (2� ⇠)�

2 arctan
p
rR � 1

p
rR � 1

⇢
1 + ⇠

2

1� ⇠
�

rR

2(1� ⇠)

��

+

0 < ⇠ < 1


1 + ⇠

2

1� ⇠
ln

⇠ � 1

⇠
+

2
p
rR � 1


1 + ⇠

2

1� ⇠
�

rR

2(1� ⇠)

�
arctan

p
rR � 1

2⇠ � 1
�

rR

4⇠(⇠ � 1) + rR

�

 
⇠ < 0

+
↵sCF

2⇡

⇢
h(⇠, rR)� |⌘|h

�
1 + ⌘(⇠ � 1), rR

��
,

Plus functions with δ-function at x=1 



Matching coefficient 

  Matching coefficient for isovector quasi-PDF in quark: 

  Matching coefficient for isovector nucleon quasi-PDF 
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where ⌘ ⌘ p
z
/p

z
R. For the momentum space one-loop quasi-PDF q̃

(1)

OM
(x, pz, µR) the di↵erence

⇥
�(y � x) � �(1 � x)

⇤

gives a plus-function. We therefore define the following plus functions with subtractions at y = 1

Z 1

1

dy
⇥
g(y)

⇤
�f(y) =

Z 1

1

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
1

0

dy
⇥
g(y)

⇤
+
f(y) =

Z
1

0

dy g(y)
⇥
f(y)� f(1)

⇤
,

Z
0

�1
dy

⇥
g(y)

⇤
 f(y) =

Z
0

�1
dy g(y)

⇥
f(y)� f(1)

⇤
, (36)

for arbitrary functions g(y) and f(y). The renormalized momentum space quasi-PDF in the RI/MOM scheme in
Feynman gauge is therefore

q̃
(1)

OM
(x, pz, pzR, µR) (37)

=
↵sCF

2⇡
(4⇣)

8
>>>>>>><

>>>>>>>:


1 + x

2

1� x
ln

x

x� 1
�

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

2x� 1
+

rR

4x(x� 1) + rR

�

�
x > 1


1 + x

2

1� x
ln

4(pz)2

�p2
�

2
p
rR � 1


1 + x

2

1� x
�

rR

2(1� x)

�
arctan

p
rR � 1

�

+

0 < x < 1


1 + x

2

1� x
ln

x� 1

x
+

2
p
rR � 1
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2
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2(1� x)

�
arctan

p
rR � 1

2x� 1
�

rR

4x(x� 1) + rR

�

 
x < 0

+
↵sCF

2⇡
(4⇣)

⇢
h(x, rR)� |⌘|h

�
1 + ⌘(x� 1), rR

��
.

Note that the last term vanishes for ⌘ = 1.
Next we consider the PDF calculated with the same o↵-shellness regulator, once again using the same identity in

Eq. (12) to uniquely define our treatment of the spinors when working o↵-shell. With this definition the renormalized
one-loop matrix element of PDF in the MS scheme is given by

q
(1)(x, µ) =

↵sCF

2⇡
(4⇣)

8
>><

>>:

0 x > 1
1 + x

2

1� x
ln

µ
2

�p2
�

1 + x
2

1� x
ln

⇥
x(1� x)

⇤
� (2� x)

�

+

0 < x < 1

0 x < 0

. (38)

Considering the factorization formula in Eq. (11), the matching coe�cient COM between the renormalized quasi-PDF
in the RI/MOM scheme and standard PDF in the MS scheme is then determined by the di↵erence between the
momentum space quasi-PDF and PDF results

C
OM

✓
⇠,

µR

pzR

,
µ

pz
,
p
z

pzR

◆
= �(1� ⇠) +

1

4⇣

h
q̃
(1)

OM
(⇠, pz, pzR, µR)� q

(1) (⇠, µ)
i
+O(↵2

s) , (39)

which gives the one-loop matching coe�cient

C
OM
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⇠,

µR

pzR

,
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pz
,
p
z

pzR

◆
� �(1� ⇠) (40)

=
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2 arctan
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+
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2⇡
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h(⇠, rR)� |⌘|h

�
1 + ⌘(⇠ � 1), rR

��
,

ξ =
x
y

pz → yPz ,  η = yPz / pR
z

RI/MOM matching also preserves particle number conservation of the nucleon PDF! 
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When utilizing the matching equation with the RI/MOM scheme in a chosen gauge, we note that the RI/MOM
quasi-PDF q̃

OM
⌧ is gauge dependent, as is the matching coe�cient C

OM
⌧ , and in both cases this is induced by the

presence of the gauge dependent RI/MOM UV counterterm. Therefore this gauge dependence is the same and yields a
gauge invariant result for the MS PDF order by order in ↵s. When the quasi-PDF is renormalized non-perturbatively
and the matching is carried out perturbatively, then the cancellation will be incomplete, and it would be reasonable
for example to look at the residual gauge dependence as a means of assessing an uncertainty from higher orders in
perturbation theory. However we will see in Sec. IV that at one-loop the gauge dependent terms are much smaller than
the residual scale dependence, and hence this is unlikely to be a significant source of uncertainty. For our numerical
analysis in Sec. IV we will consider both the Feynman gauge result from Eq. (40), denoted C

OM, and the Landau
gauge result obtained from Eq. (46) with ⌧ = 0, and denoted C

OM
⌧=0

.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi-
PDF and PDF was originally calculated in Ref. [26] in

an on-shell scheme with the UV divergence regulated by
a finite transverse momentum cuto↵ ⇤T , using Feynman
gauge. Using our notation for the plus functions the re-
sult for this scheme is

C
⇤T

⇣
⇠,

µ

pz
,
⇤

P z

⌘
= �(1� ⇠) (47)

+
↵sCF

2⇡

8
>>>>>>><

>>>>>>>:


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2
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⇠
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+ 1 +

1

(1� ⇠)2
⇤T

P z

�

�
⇠ > 1


1 + ⇠

2

1� ⇠
ln

4(pz)2

µ2
+

1 + ⇠
2

1� ⇠
ln ⇠(1� ⇠) + 1�

2⇠

1� ⇠
+

1

(1� ⇠)2
⇤T

P z

�

+

0 < ⇠ < 1


1 + ⇠

2

1� ⇠
ln

⇠ � 1

⇠
� 1 +

1

(1� ⇠)2
⇤T

P z

�

 
⇠ < 0

.

This result was used in the lattice calculations of fu�d

in Refs. [18–21]. Note that the linear divergence is not
subtracted in the quasi-PDF in this scheme, so there is
no renormalization scale µR associated with it.

In the recent works [23, 31], the quasi-PDF is renormal-
ized in the RI/MOM scheme and matched to the quasi-
PDF in the MS scheme. Eventually, the quasi-PDF in
the MS scheme needs to be matched to PDF in the MS
scheme. The result for C

MS is gauge invariant, which
follows because on-shell definitions of the quasi-PDF and
PDF in the MS scheme are gauge invariant (or alterna-
tively because any gauge dependence associated with o↵-
shell regulation of the infrared physics will be identical
for the quasi-PDF and PDF). To carry out the appropri-
ate matching coe�cient for this case one must carefully
treat UV divergences that come from x ! ±1, which
implies that there is not a single overall plus function
for each region. The result for this case is presented in
Ref. [17], and our result in RIMOM is consistent with the
scheme conversion formulas presented there.

IV. NUMERICAL ANALYSIS

In this section we numerically analyze the quasi-PDF
by studying how the matching coe�cient in Eq. (8)

changes the PDF. To calculate the convolution between
the momentum space matching coe�cient COM(x/y) and
a PDF f(y) we note that for �1 < y < 1 and fixed x the
variable x/y goes over the range �1 < x/y < �|x| and
|x| < x/y < 1. For any plus function g

plus(x/y) of the
types defined in Eq. (36), namely with a subtraction at
1, we can carry out the integral by imposing a soft cuto↵
|x/y � 1| > � = 10�m on its pure function part, and
calculating the coe�cient of �-function which will also
depend on �. When g

plus(x/y) is convoluted with an ar-
bitray function, the result should be independent of the
soft cuto↵ �, as we will check in the calculations. Alter-
natively, we can also calculate the convolution by using

Z
dy g

plus

⇣
x

y

⌘
f(y)

|y|
(48)

=

Z
dy
0
g
plus

r (y0)


x

y02
f(x/y0)

|x/y0|
� x

f(x)

|x|

�

=

Z 1

�1
dy


1

|y|
g
plus

r

⇣
x

y

⌘
f(y)�

1

|x|
g
plus

r

⇣
y

x

⌘
f(x)

�
.

Note that here we absorbed the limits ✓(1 � |y|) in the
function f(y). Here the subscript r on g

plus
r denotes the

pure function, which are the argument of the plus func-
tions. For the first equality in Eq. (48) we changed vari-
able to y

0 = x/y and then applied the plus functions. For

Linear divergence 
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Therefore the matching coe�cient relating the quasi-PDF and PDF is

C

✓
⇠,

µ

|y|P z

◆
= � (1� ⇠) +

↵sCF
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>>>>>>>>><
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+
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ln
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+
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2
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+

3

2
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(⇠ � 1)2
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1

⇠ � 1
) +

1
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1
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. (64)

Again this result is independent of the IR regulator as it must be. Here the plus function terms
⇥
g1(⇠)

⇤[1,1]

+(1)
and

⇥
g2(⇠)

⇤[�1,0]

+(1)
have integrands that converge for ⇠ ! ±1, behaving as gi(⇠) ⇠ 1/⇠2. Note that if we had instead use

the renormalized MS quasi-PDF calculated in Eq. (55), we will obtain a di↵erent matching coe�cient C with di↵erent
�-functions at ⇠ = ±1. However, the �-functions do not contribute to the convolution integral in Eq. (27) for any
integrable PDFs. For example, to carry out the convolution with 1/⇠2�+(1/⇠) we can use �+

�
1

⇠

�
= lim�!0+ �

�
1

⇠ ��
�
,

which when plugged into the factorization formula gives

lim
�!0+

Z
dy

|y|

y2

x2
�
⇣y
x
� �

⌘
fu�d(y) = lim

�!0+
�fu�d(�x) . (65)

For the plus-function at 1 using Eqs. (C9) and (C3) we have

Z
+1

�1

dy

|y|


1

(x/y)

�[1,1]

+(1)

fu�d(y) = lim
�!0+

Z
+1

�1
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|y|


✓(x/y � �)

x/y
+

y2

x2
�
⇣y
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� �

⌘
ln�

�
fu�d(y)

=

Z
+1

�1
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x

y

|y|
fu�d(y) + lim

�!0+
�fu�d(�x) ln� .

In the last line we dropped the ✓(x/y � �) since at small y our PDF behaves as fu�d(y) ⇠ y�1+a with 0 < a < 1.
This also implies

lim
�!0

�fu�d(�x) / x�1+a lim
�!0

�a = 0 ,

lim
�!0

�fu�d(�x) ln� / x�1+a lim
�!0

�a ln� = 0 , (66)

which means that the distribution contributions evaluated at ⇠ = ±1 in the matching coe�cient C give zero contri-
bution.

Therefore, the matching coe�cients calculated from the quasi-PDFs in Eq. (55) and Eq. (57) are the same in e↵ect,
and we can simply drop all the �-functions at ⇠ = ±1 when plugging them into the factorization formula:

CMS
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. (67)

The use of Eq. (67) in the factorization theorem is valid for any PDF that behaves as limy!0 f(y, µ) ⇠ y�1+a with
a > 0. We have also computed the matching coe�cient for the � = �z case, and it is given by C�z (⇠, µ/(|y|P z)) =
C(⇠, µ/(|y|P z)) +�C�z (⇠, µ/(|y|P z)) with

�C�z (⇠, µ/(|y|P z)) =
↵sCF

2⇡
2(1� ⇠) . (68)

Plus functions with δ-function at x=1 
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When utilizing the matching equation with the RI/MOM scheme in a chosen gauge, we note that the RI/MOM
quasi-PDF q̃

OM
⌧ is gauge dependent, as is the matching coe�cient C

OM
⌧ , and in both cases this is induced by the

presence of the gauge dependent RI/MOM UV counterterm. Therefore this gauge dependence is the same and yields a
gauge invariant result for the MS PDF order by order in ↵s. When the quasi-PDF is renormalized non-perturbatively
and the matching is carried out perturbatively, then the cancellation will be incomplete, and it would be reasonable
for example to look at the residual gauge dependence as a means of assessing an uncertainty from higher orders in
perturbation theory. However we will see in Sec. IV that at one-loop the gauge dependent terms are much smaller than
the residual scale dependence, and hence this is unlikely to be a significant source of uncertainty. For our numerical
analysis in Sec. IV we will consider both the Feynman gauge result from Eq. (40), denoted C

OM, and the Landau
gauge result obtained from Eq. (46) with ⌧ = 0, and denoted C

OM
⌧=0

.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi-
PDF and PDF was originally calculated in Ref. [26] in

an on-shell scheme with the UV divergence regulated by
a finite transverse momentum cuto↵ ⇤T , using Feynman
gauge. Using our notation for the plus functions the re-
sult for this scheme is

C
⇤T

⇣
⇠,

µ

pz
,
⇤

P z

⌘
= �(1� ⇠) (47)

+
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>>>>>>>:
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
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2

1� ⇠
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+
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+
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
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2

1� ⇠
ln
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P z

�

 
⇠ < 0

.

This result was used in the lattice calculations of fu�d

in Refs. [18–21]. Note that the linear divergence is not
subtracted in the quasi-PDF in this scheme, so there is
no renormalization scale µR associated with it.

In the recent works [23, 31], the quasi-PDF is renormal-
ized in the RI/MOM scheme and matched to the quasi-
PDF in the MS scheme. Eventually, the quasi-PDF in
the MS scheme needs to be matched to PDF in the MS
scheme. The result for C

MS is gauge invariant, which
follows because on-shell definitions of the quasi-PDF and
PDF in the MS scheme are gauge invariant (or alterna-
tively because any gauge dependence associated with o↵-
shell regulation of the infrared physics will be identical
for the quasi-PDF and PDF). To carry out the appropri-
ate matching coe�cient for this case one must carefully
treat UV divergences that come from x ! ±1, which
implies that there is not a single overall plus function
for each region. The result for this case is presented in
Ref. [17], and our result in RIMOM is consistent with the
scheme conversion formulas presented there.

IV. NUMERICAL ANALYSIS

In this section we numerically analyze the quasi-PDF
by studying how the matching coe�cient in Eq. (8)

changes the PDF. To calculate the convolution between
the momentum space matching coe�cient COM(x/y) and
a PDF f(y) we note that for �1 < y < 1 and fixed x the
variable x/y goes over the range �1 < x/y < �|x| and
|x| < x/y < 1. For any plus function g

plus(x/y) of the
types defined in Eq. (36), namely with a subtraction at
1, we can carry out the integral by imposing a soft cuto↵
|x/y � 1| > � = 10�m on its pure function part, and
calculating the coe�cient of �-function which will also
depend on �. When g

plus(x/y) is convoluted with an ar-
bitray function, the result should be independent of the
soft cuto↵ �, as we will check in the calculations. Alter-
natively, we can also calculate the convolution by using

Z
dy g

plus

⇣
x

y

⌘
f(y)

|y|
(48)

=

Z
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0
g
plus
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1

|x|
g
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r
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y

x

⌘
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�
.

Note that here we absorbed the limits ✓(1 � |y|) in the
function f(y). Here the subscript r on g

plus
r denotes the

pure function, which are the argument of the plus func-
tions. For the first equality in Eq. (48) we changed vari-
able to y

0 = x/y and then applied the plus functions. For
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Therefore the matching coe�cient relating the quasi-PDF and PDF is
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Again this result is independent of the IR regulator as it must be. Here the plus function terms
⇥
g1(⇠)

⇤[1,1]

+(1)
and

⇥
g2(⇠)

⇤[�1,0]

+(1)
have integrands that converge for ⇠ ! ±1, behaving as gi(⇠) ⇠ 1/⇠2. Note that if we had instead use

the renormalized MS quasi-PDF calculated in Eq. (55), we will obtain a di↵erent matching coe�cient C with di↵erent
�-functions at ⇠ = ±1. However, the �-functions do not contribute to the convolution integral in Eq. (27) for any
integrable PDFs. For example, to carry out the convolution with 1/⇠2�+(1/⇠) we can use �+

�
1

⇠

�
= lim�!0+ �

�
1
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�
,

which when plugged into the factorization formula gives
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For the plus-function at 1 using Eqs. (C9) and (C3) we have
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�!0+
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In the last line we dropped the ✓(x/y � �) since at small y our PDF behaves as fu�d(y) ⇠ y�1+a with 0 < a < 1.
This also implies

lim
�!0

�fu�d(�x) / x�1+a lim
�!0

�a = 0 ,

lim
�!0

�fu�d(�x) ln� / x�1+a lim
�!0

�a ln� = 0 , (66)

which means that the distribution contributions evaluated at ⇠ = ±1 in the matching coe�cient C give zero contri-
bution.

Therefore, the matching coe�cients calculated from the quasi-PDFs in Eq. (55) and Eq. (57) are the same in e↵ect,
and we can simply drop all the �-functions at ⇠ = ±1 when plugging them into the factorization formula:

CMS

✓
⇠,

µ

|y|P z

◆
= � (1� ⇠) +

↵sCF

2⇡

8
>>>>>>>>><

>>>>>>>>>:

✓
1 + ⇠2

1� ⇠
ln

⇠

⇠ � 1
+ 1 +

3

2⇠

◆[1,1]

+(1)

�
3

2⇠
⇠ > 1

✓
1 + ⇠2

1� ⇠


� ln

µ2

y2P 2
z

+ ln
�
4⇠(1� ⇠)

��
�

⇠(1 + ⇠)

1� ⇠

◆[0,1]

+(1)

0 < ⇠ < 1

✓
�
1 + ⇠2

1� ⇠
ln

�⇠

1� ⇠
� 1 +

3

2(1� ⇠)

◆[�1,0]

+(1)

�
3

2(1� ⇠)
⇠ < 0

+
↵sCF

2⇡
�(1� ⇠)

✓
3

2
ln

µ2

4y2P 2
z

+
5

2

◆
. (67)

The use of Eq. (67) in the factorization theorem is valid for any PDF that behaves as limy!0 f(y, µ) ⇠ y�1+a with
a > 0. We have also computed the matching coe�cient for the � = �z case, and it is given by C�z (⇠, µ/(|y|P z)) =
C(⇠, µ/(|y|P z)) +�C�z (⇠, µ/(|y|P z)) with

�C�z (⇠, µ/(|y|P z)) =
↵sCF

2⇡
2(1� ⇠) . (68)
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IV. DISCUSSION

A. Numerical Results of the Convolution between Matching Coe�cient and PDF

In this section we study how the matching procedure as depicted in Eq. (6) changes the PDF from its original
values. We take the unpolarized iso-vector parton distribution as an example,

fu�d(x, µ) = fu(x, µ)� fd(x, µ)� fū(�x, µ) + fd̄(�x, µ) , (26)

where we have also included the anti-parton distributions

fū(�x, µ) = �fū(x, µ) , fd̄(�x, µ) = �fd̄(x, µ) . (27)

Now let us calculate the convolution between the matching coe�cient C
RI/MOM(⇠) and fu�d(x). To numerically

calculate the integrals we should be careful with the singularities at ⇠ = 1 in the “real” part of CRI/MOM(⇠). The
plus functions in Eq. (25) will help us avoid such singularities, but in practice we find it more convenient to use
C

RI/MOM(⇠) in the form without plus functions. Specifically, we rewrite C
RI/MOM(⇠) as

C
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where “r” denotes the “real” part. As a result,
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Our inputs are the iso-vector PDF fu�d from “MSTW 2008” [7], and the next-to-next-to-leading order strong
coupling ↵s(µ). For numerical calculation we impose a UV cut-o↵ xcut = 10n on both |x/y| and |y/x| for fixed x, and
a soft cut-o↵ 10�✏ on y when x/y ! 1. By varying ✏ = 4, 5, 6 and n = 4, 5, 6, 7, we find the integrals insensitive to
these two cut-o↵s, so we choose ✏ = 5 and n = 4 for our display of the results.

At P z = 2
p
2 GeV, we fix the renormalization scale µR = 4 GeV in the quasi PDF and vary the factorization scale µ.

The result is compared to fu�d(x, µ) in Fig. 2a. The red and blue solid curves are fu�d(x, µ) and the convoluted result
C

RI/MOM
⌦ fu�d at µ = 4 GeV respectively, while the yellow and green uncertainty bands cover µ 2 [2 GeV, 8 GeV].

A first glance at Fig. 2a tells us that the convoluted result only di↵ers from the original PDF slightly, which is
appealing for the convergence of perturbation theory. To take a closer look, we subtract fu�d(x, µ = 4 GeV) from
both fu�d(x, µ) and the C

RI/MOM
⌦ fu�d, and plot their di↵erences in Fig. 2b. In addition, we plot the ratios

C
RI/MOM

⌦ fu�d � fu�d(x, 4 GeV)

|CRI/MOM ⌦ fu�d|+ |fu�d(x, 4 GeV)|
V.S.

fu�d(x, µ)� fu�d(x, 4 GeV)

|fu�d(x, µ)|+ |fu�d(x, 4 GeV)|
(30)

in Fig. 2c. As shown in Fig. 2b, the C
RI/MOM

⌦ fu�d has small non-zero values outside the region �1 < x < 1. It
is also evident from both Fig. 2b and Fig. 2c that in the approximate regions �0.4 < x < �0.1 and 0 < x < 0.6
C

RI/MOM
⌦fu�d lies within the uncertainty band of fu�d. The di↵erence between C

RI/MOM
⌦fu�d and fu�d becomes

significant for large |x|, i.e., �1.0 < x < �0.5 and 0.7 < x < 1.0, but these are also regions where fu�d is close to
zero.
Our next step is to fix the factorization scale at µ = 8 GeV and vary the renormalization scale µR in the quasi

PDF. According to Eq. (22), the quasi PDF defined in the RI/MOM scheme does not satisfy a renormalization group
equation, so di↵erent renormalization (or subtraction) scale µR’s lead to di↵erent definitions of quasi PDF’s. For
µR = 4, 8, 16 GeV, we plot comparisons between C

RI/MOM
⌦ fu�d and fu�d(x, µR), as shown in Fig. 3. As one can

see, the quasi PDF in the RI/MOM scheme is quite sensitive to the scale µR that we use to define it.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi PDF and PDF has already been calculated in Ref. [18], which
was used in the lattice calculations of fu�d in Refs. [14–17]. In Ref. [18] the UV divergence is regularized by a
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these two cut-o↵s, so we choose ✏ = 5 and n = 4 for our display of the results.
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2 GeV, we fix the renormalization scale µR = 4 GeV in the quasi PDF and vary the factorization scale µ.

The result is compared to fu�d(x, µ) in Fig. 2a. The red and blue solid curves are fu�d(x, µ) and the convoluted result
C

RI/MOM
⌦ fu�d at µ = 4 GeV respectively, while the yellow and green uncertainty bands cover µ 2 [2 GeV, 8 GeV].

A first glance at Fig. 2a tells us that the convoluted result only di↵ers from the original PDF slightly, which is
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in Fig. 2c. As shown in Fig. 2b, the C
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⌦ fu�d has small non-zero values outside the region �1 < x < 1. It
is also evident from both Fig. 2b and Fig. 2c that in the approximate regions �0.4 < x < �0.1 and 0 < x < 0.6
C

RI/MOM
⌦fu�d lies within the uncertainty band of fu�d. The di↵erence between C
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⌦fu�d and fu�d becomes

significant for large |x|, i.e., �1.0 < x < �0.5 and 0.7 < x < 1.0, but these are also regions where fu�d is close to
zero.
Our next step is to fix the factorization scale at µ = 8 GeV and vary the renormalization scale µR in the quasi

PDF. According to Eq. (22), the quasi PDF defined in the RI/MOM scheme does not satisfy a renormalization group
equation, so di↵erent renormalization (or subtraction) scale µR’s lead to di↵erent definitions of quasi PDF’s. For
µR = 4, 8, 16 GeV, we plot comparisons between C

RI/MOM
⌦ fu�d and fu�d(x, µR), as shown in Fig. 3. As one can

see, the quasi PDF in the RI/MOM scheme is quite sensitive to the scale µR that we use to define it.

B. Comparison to Other Schemes

The one-loop matching coe�cient between the quasi PDF and PDF has already been calculated in Ref. [18], which
was used in the lattice calculations of fu�d in Refs. [14–17]. In Ref. [18] the UV divergence is regularized by a
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FIG. 2. Comparison between the PDF xfu�d and the quasi-PDF result obtained from x(COM ⌦ fu�d) in Feynman gauge. The
orange and blue bands indicate the results from varying the factorization scale µ by a factor of two. Left: x(COM ⌦ fu�d) and
xfu�d. Right: di↵erences when taking x(COM ⌦ fu�d) or xfu�d, and subtracting xfu�d(x, 3 GeV).

the last equality in Eq. (48) we changed variable back to
y = x/y

0 in the first term, and to y
0 = y/x in the second

term. We have checked that these two methods give the
same result.

As an example we use for our analysis the unpolarized
iso-vector parton distribution,

fu�d(x, µ) = fu(x, µ)� fd(x, µ)� fū(�x, µ) + fd̄(�x, µ),
(49)

where we include fū(�x, µ) = �fū(x, µ) and fd̄(�x, µ) =
�fd̄(x, µ), the anti-parton distributions. We use the
next-to-leading-order iso-vector PDF fu�d from “MSTW
2008” [7] with the corresponding running coupling ↵s(µ).
For the numerical calculation we impose a UV cuto↵ on
the y-integral so that |y| < ycut = 10n for any x and
some n > 1. Results in the RI/MOM scheme are inde-
pendent of this cuto↵, whereas we will show below that
the transverse cuto↵ scheme exhibits sensitivity to ycut.
We also test soft cuto↵s |y| > 10�k and |x/y�1| > 10�m

with m � 3, but find that the results in all schemes are
independent of k and m.

As default values for our figures we take P
z = 3.0

GeV, use the Feynman gauge RI/MOM matching result
C

OM from Eq. (40) and the MS renormalization scale
µ = 3.0GeV. The RI/MOM matching coe�cient C

OM

is a function of µ and P
z, as well as the ratios P

z
/p

z
R

and rR = µ
2

R/(p
z
R)

2. The size of the correction induced
by the matching coe�cient does depend on the values of
P

z
/p

z
R and rR, and we will elaborate on this below. For

our study, we set the default values pzR = 0.4P z and µR =
2.0pzR and then consider variations of µ, P z, P z

/p
z
R, and

rR about these choices.
First consider Fig. 2 which shows a comparison of

the RI/MOM quasi-PDF q̃
OM(x, P z

, p
z
R, µR) = (COM

⌦

fu�d) (red solid line) and the MS PDF fu�d(x, µ) (blue
dashed line). In this figure and in others below we mul-
tiply by x in order to more easily observe the small

x region. The left panel shows the direct comparison,
and the right panel makes the comparison subtracting
xfu�d(x, µ). We see that the quasi-PDF and PDF are
close to one another, which is appealing for the conver-
gence of perturbation theory. In Fig. 2 we also vary the
factorization scale µ by a factor of two, from µ = 1.5GeV
to µ = 6GeV, showing the result by the blue and orange
bands about the PDF and quasi-PDF respectively. For
the quasi-PDF from Eq. (40) the dependence on µ cancels
out between C and q, order by order in perturbation the-
ory, whereas the PDF has a dependence on µ at leading-
logarithmic order, so in the figure a decrease in the µ de-
pendence is observed as expected. As shown in Fig. 2, the
C

OM
⌦fu�d has small non-zero values outside the region

�1 < x < 1. To examine these di↵erences more closely,
we subtract the central curve xfu�d(x, µ = 3 GeV) from
both xfu�d(x, µ) and x(COM

⌦ fu�d), and plot their dif-
ferences in the right panel of Fig. 2.

Next we examine the gauge dependence of the quasi-
PDF in the RI/MOM scheme. The result for Landau
gauge (⌧ = 0) is shown in the left panel of Fig. 3, which
is plotted in the same way as Fig. 2, and appears very
similar. To examine the change to the quasi-PDF we
therefore plot the di↵erence between the Landau gauge
and Feynman gauge result in the right panel of Fig. 3. We
see that the ⌧ -dependent contribution in the matching
coe�cient is a fairly small but noticeable correction in
the 0 < x < 1 region, but can be a larger correction for
negative x.

Our next step is to fix the factorization scale at µ = 3.0
GeV and vary the parameters rR and p

z
R in the quasi-

PDF. From Eq. (37) we see that the definition of the
RI/MOM quasi-PDF depends on the parameter rR, so
di↵erent rRs and p

z
Rs correspond to di↵erent quasi-PDfs.

For µR = {1.2, 2.0, 2.5}pzR, we plot in the left panel of
Fig. 4 a comparison between x(COM

⌦ fu�d)(x, µR) and
xfu�d(x, µ) with µ = 3.0GeV (blue dashed line). The
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FIG. 3. Comparison between the PDF xfu�d and the quasi-PDF obtained from x(COM ⌦ fu�d) in the Landau gauge. The
orange, blue, and green bands indicate the results from varying the factorization scale µ by a factor of two.

FIG. 4. Left panel: Comparison between the PDF xfu�d and the quasi-PDF from x(COM ⌦ fu�d) determined at di↵erent µRs.
Right panel: The pzR dependence of the quasi-PDF x(COM ⌦ fu�d), compared to the PDF xfu�d which is independent of pzR.
In both panels the blue band indicates the µ renormalization scale dependence of the PDF from variation by a factor of two.

blue band shows how the PDF changes when we vary
µ between µ = 1.5 and µ = 6.0GeV. We see that the
RI/MOM quasi-PDF is quite sensitive to the choice of
rR, exhibiting larger variations than that of varying the
renormalization scale µ in the PDF. We also observe that
the quasi-PDF moves away from the PDF as µR/p

z
R is

made larger. The quasi-PDF in the RI/MOM scheme
also satisfies a multiplicative renormalization group equa-
tion, derived in App. D, which can be analyzed with a
perturbative anomalous dimension for µR � ⇤QCD. In
the right panel of Fig. 4 we vary p

z
R = {0.2, 0.4, 1.0}P z

while holding fixed µR = 2.0pzR and P
z = µ = 3.0

GeV. We observe that there exists a range of values with
p
z
R/P

z
' 0.2� 0.4 which tend to minimize the impact of

the matching coe�cient in the 0 < x < 1 region.

In Fig. 5 we vary P
z = {1, 3, 6} GeV while holding

µR = 2.0pzR, p
z
R = 0.4P z fixed with µ = 3.0 GeV. We

observe that in the tails (x > 1 and x < �1) that the
RI/MOM quasi-PDF is not sensitive to P z . On the other
hand, in the central region �1 < x < 1 the matching
coe�cient gives non-trivial corrections in the P

z
! 1

limit, and hence there is always perturbative conversion
needed between the quasi-PDF and PDF.

Finally we consider the comparison between our
RI/MOM results and the matching results in the trans-
verse cut-o↵ scheme. At P z = µ = 3.0 GeV, pzR = 0.4P z,
µR = 2.0pzR, and ⇤T = 6.0GeV, we calculate C⇤T ⌦fu�d

with ycut = 101, 102, 104 and plot the results with com-
parison to fu�d in Fig. 6. Unlike for C

OM
⌦ fu�d, the

results for C
⇤T ⌦ fu�d su↵er from UV divergences in

the integration over y, and they di↵er significantly from
fu�d. This means that when one inverts the factorization
formula in Eq. (8) to determine the PDF from the quasi-
PDF, that there must be a large cancellation of UV diver-
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FIG. 5. Comparison between the PDF xfu�d and the quasi-
PDF from x(COM ⌦ fu�d) determined at di↵erent P zs. The
blue band indicates the µ renormalization scale dependence
of the PDF from variation by a factor of two.

FIG. 6. Results for the quasi-PDF in the transverse cuto↵
scheme compared to the PDF fu�d. We show x(C⇤T ⌦ fu�d)
with three di↵erent values for the cuto↵ ycut in the convolu-
tion integral.

gences between the quasi-PDF from lattice QCD and the
matching coe�cient in the convolution integral. Since
the UV region of a matching factor C(x/y) is near y = 0
as well as y ! 1 for its �-function part, it is necessary
to test the sensitivity of the convolution integral to the
smallest momentum fraction of the quasi-PDF and ycut

for the lattice calculations in Ref. [18–21, 23]. Using the
RI/MOM scheme avoids this complication. Another ad-
vantage of the RI/MOM scheme is that in the unphysical
regions |x| > 1 the ↵s corrections to the matching coe�-
cient fall as 1/(P z)2 as P

z
! 1, so the quasi-PDF will

vanish asymptotically in this region. This is not the case
for the quasi-PDF in the transverse cuto↵ scheme, where
the quasi-PDF asymptotes to a non-trivial function for

|x| > 1 when P
z
! 1.

The reason why C
OM

⌦ fu�d has better UV con-
vergence than the transverse cuto↵ scheme is that the
RI/MOM scheme introduces a counterterm to the quasi-
PDF which cancels out the UV divergences that arises
when one integrates over y. The matching result in the
RI/MOM scheme therefore yields only a bounded small
e↵ect which one can be more confident about treating
perturbatively. Thus, to reduce the uncertainties, our re-
sults imply that it is reasonable to favor RI/MOM over
the transverse cuto↵ scheme. (In Ref. [17] it is shown
that the matching coe�cient for the quasi-PDF in the
MS scheme, CMS, also yields a convergent convolution
integral.)

V. CONCLUSION

We have described the procedure of nonperturbative
renormalization of quasi-PDF in the RI/MOM scheme.
The z-dependent renormalization constant is obtained by
imposing Eq. (9) on the o↵-shell quark matrix element
of the spatial correlation operator in lattice QCD. Then
the renormalization constant is applied to the nucleon
matrix element of the same correlation operator whose
Fourier transform gives the quasi-PDF on the lattice. In
RI/MOM the renormalized quasi-PDF is regularization
invariant and can be related to PDF in the MS scheme
through a perturbative matching condition, which is cal-
culable in the continuum theory with dimensional regu-
larization. Since all the large corrections in lattice per-
turbation theory are absorbed into the nonperturbative
renormalization constant, the uncertainty of this proce-
dure comes from lattice discretization e↵ects and pertur-
bative matching in the continuum theory. Our numerical
results show that the one-loop matching for the RI/MOM
scheme has nice UV convergence and reasonable magni-
tude for a perturbative correction, which is in contrast to
the matching result for the transverse-momentum cuto↵
scheme. This indicates that the theoretical uncertainty
in the perturbative matching for the RI/MOM scheme
is small and controllable, thus making it more favorable
than the transverse-momentum cuto↵ scheme. Further-
more, the matching in the RI/MOM scheme is consistent
with the quasi-PDF vanishing in the unphysical region
|x| > 1 as P

z
! 1, unlike the results in the transverse

cuto↵ scheme. To increase the accuracy of our results in
the future, one can study the O(a) improvement for the
lattice simulation of quasi-PDF and calculate the match-
ing coe�cient to higher orders in perturbation theory.
A crucial ingredient in obtaining more accurate lattice
results is to consider larger P z by working with finer lat-
tices, in order to reduce power corrections. As the capa-
bilities for doing simulations with larger nucleon momen-
tum on the lattice continue to improve, we believe that
our results will provide an important ingredient for future
lattice calculations of PDF with the desired accuracy.
It should be noted that on the lattice there are not
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when one integrates over y. The matching result in the
RI/MOM scheme therefore yields only a bounded small
e↵ect which one can be more confident about treating
perturbatively. Thus, to reduce the uncertainties, our re-
sults imply that it is reasonable to favor RI/MOM over
the transverse cuto↵ scheme. (In Ref. [17] it is shown
that the matching coe�cient for the quasi-PDF in the
MS scheme, CMS, also yields a convergent convolution
integral.)

V. CONCLUSION

We have described the procedure of nonperturbative
renormalization of quasi-PDF in the RI/MOM scheme.
The z-dependent renormalization constant is obtained by
imposing Eq. (9) on the o↵-shell quark matrix element
of the spatial correlation operator in lattice QCD. Then
the renormalization constant is applied to the nucleon
matrix element of the same correlation operator whose
Fourier transform gives the quasi-PDF on the lattice. In
RI/MOM the renormalized quasi-PDF is regularization
invariant and can be related to PDF in the MS scheme
through a perturbative matching condition, which is cal-
culable in the continuum theory with dimensional regu-
larization. Since all the large corrections in lattice per-
turbation theory are absorbed into the nonperturbative
renormalization constant, the uncertainty of this proce-
dure comes from lattice discretization e↵ects and pertur-
bative matching in the continuum theory. Our numerical
results show that the one-loop matching for the RI/MOM
scheme has nice UV convergence and reasonable magni-
tude for a perturbative correction, which is in contrast to
the matching result for the transverse-momentum cuto↵
scheme. This indicates that the theoretical uncertainty
in the perturbative matching for the RI/MOM scheme
is small and controllable, thus making it more favorable
than the transverse-momentum cuto↵ scheme. Further-
more, the matching in the RI/MOM scheme is consistent
with the quasi-PDF vanishing in the unphysical region
|x| > 1 as P

z
! 1, unlike the results in the transverse

cuto↵ scheme. To increase the accuracy of our results in
the future, one can study the O(a) improvement for the
lattice simulation of quasi-PDF and calculate the match-
ing coe�cient to higher orders in perturbation theory.
A crucial ingredient in obtaining more accurate lattice
results is to consider larger P z by working with finer lat-
tices, in order to reduce power corrections. As the capa-
bilities for doing simulations with larger nucleon momen-
tum on the lattice continue to improve, we believe that
our results will provide an important ingredient for future
lattice calculations of PDF with the desired accuracy.
It should be noted that on the lattice there are not

Transverse momentum cut-off scheme MSbar scheme 
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FIG. 2. The MS scheme PDF xfu�d and the MS quasi-PDF obtained from xCMS(pz) ⌦ fu�d, comparing results obtained
with pz = yP z and pz = P z.

FIG. 3. (left) Comparison between the PDF xfu�d and the pseudo-PDF x(CMS ⌦ fu�d) in the MS scheme. The orange and
blue bands indicate the results from varying the factorization scale µ = 4GeV by a factor of two. (right) Same but now showing
only central pseudo-PDF curves for di↵erent values of z.

VI. IMPLICATIONS FOR LATTICE
CALCULATIONS

Our proof in Sec. II makes clear the relationship
between the renormalized quasi-PDF, Io↵e-time, and
pseduo-PDF distributions. As a practical matter there
are a few di↵erent ways in which these equations can
be used to convert a lattice calculation of the Io↵e-time
distribution Q̃ into a PDF. Three examples are 1) first
Fourier transform to the quasi-PDF with Eq. (24), and
then use the factorization theorem in Eq. (27), 2) first
Fourier transform to the pseudo-PDF with Eq. (28), and
then use the factorization theorem in Eq. (29), and 3)
first match to the Fourier transform the position space
PDF Q(⇣, µ) using the Io↵e-time factorization theorem
in Eq. (23), and then transform it to the PDF with the
inverse of Eq. (22). Since the numerical implementation
of these steps may have slightly di↵erent systematics it

is interesting to compare them, or to use more than one
approach in order to reduce uncertainties.

According to the analysis in Sec. II, for the factoriza-
tion theorem of the Euclidean distributions to work, one
must calculate the same correlation function, or Io↵e-
time distribution, with small distance z2 and large mo-
mentum P z so that the dynamical and kinematic higher-
twist e↵ects are suppressed. For practical lattice calcu-
lations, this means that there is only a finite number of
useful data points in (z, P z) that we can use to extract
the PDF.

To illustrate this, consider a 483⇥64 lattice with spac-
ing a = 0.09 fm. The distance of the spatial correlation
z is in units of a ⇠ 1/2.2 GeV�1, and the nucleon mo-
mentum P z is in units of 2⇡/(48a) ⇠ 0.29 GeV. Let us
take ⇤QCD ⇠ 0.3 GeV. In principal the target mass cor-
rections can be subtracted. If we consider various values
z = ma and P z = n⇤2⇡/(48a) for integer m and n, then

Izubuchi, Ji, Jin, Stewart and Y.Z., 2018 
Xiong, Ji, Zhang, Zhao, 2014; 
 
Recall unregulated UV divergence when 
 x/y->∞, and y/x->∞, use a hard cut-off 
ycut=10±n. 



Scale dependence of the matching 
correction 

  Dependence of µ and Pz follow the Altarelli-Parisi equation, whose 
solution is known so we can resum the large logarithms of µ/Pz; 

  Dependence of µR, pR
z is more complicated, and is scheme 

dependent. Large terms in one-loop correction could be 
resummed with a “renormalization group equation” (RGE),  

  It is simpler to make good choices of scales; 

  The final result of the PDF from lattice calculation should be 
independent of the intermediate scales Pz, µR, pR

z . Two-loop 
matching would be useful to test these perturbative uncertainties. 

4/6/18 Lattice PDF Workshop, Maryland 
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Using these results the matching coe�cient becomes
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with
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. (C7)

Again this result is independent of the choice of IR regulator used for the matching calculation. If we repeat
this calculation using the on-shell scheme discussed in App. B then it is easy to see that �C

OM�z

(⇠, µR/p
z
R) =

[q̃(1)�
z

CT
(⇠, pzR, µR) � q̃

(1)

CT
(⇠, pzR, µR)]/(4⇣), which is the di↵erence of the counterterms that specify the two RI/MOM

schemes. Using Eq. (C2) this immediately yields Eq. (C7).

Using the same settings as in Fig. 2, we plot in the left panel of Fig. 7 the result for the quasi-PDF computed with
the matching in this �

z scheme, x(COM�z

⌦ fu�d), and compare it with the MS PDF. In the right panel of Fig. 7
we plot the di↵erence between the two treatments of the spinors, x(COM�z � C

OM)⌦ fu�d. The modification to the
matching from this alternate RI/MOM scheme is seen to be an e↵ect of comparable size to the di↵erence between
the quasi-PDF and PDF shown in Fig. 2 (right panel), and hence it is important to carefully specify the treatment of
spinors when defining an RI/MOM scheme. The results for the two schemes given here su�ce to determine the result
in any other possible scheme defined by a di↵erent treatment of the spinors at one-loop order.

Appendix D: Renormalization Group Equation for
the RI/MOM Quasi-PDF

The µR dependence of the quasi-PDF takes a rather
nontrivial form in the RI/MOM scheme, as shown in
Eq. (34). It is useful to examine this dependence in the
form of a renormalization group equation (RGE). Due to
the multiplicative renormalization in Eq. (6), the RGE
of the quasi-PDF in position space has the form

dq̃(z, P z
, p

z
R, µR)

d lnµR
= �̃(z, pzR, µR) q̃(z, P

z
, p

z
R, µR) , (D1)

where the anomalous dimension �̃ can be computed from
the renormalization constant through

�̃(z, pzR, µR) = �
d

d lnµR
ln Z̃OM(z, pzR, ✏, µR) . (D2)

Based on the result in Eq. (33), and the fact that at
one-loop

�̃
(1)(z, pzR, µR) = µR

d

dµR

q̃
(1)

CT
(z, pz, pzR, µR)

(4pz⇣ e�ipzz)
, (D3)

we find



Summary 

  The implementation of the RI/MOM scheme on the 
nonperturbative renormalization of the quasi PDF in 
lattice QCD is discussed; 

  The one step matching for RI/MOM quasi-PDF 
preserves vector current conservation, and leads to 
convergent matching integrals. 

  Scale dependence of the matching correction 
introduces systematic uncertainty. RGE and NNLO 
calculation can be useful for high precision 
calculations. 

4/6/18 Lattice PDF Workshop, Maryland 



MSbar treatment 

  Bare quasi-PDF: 

ε expansion: 
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the bare quasi-PDF,

q̃(1)(x, pz, ✏) =
↵sCF

2⇡

⇢
3

2

✓
1

✏UV

�
1

✏IR

◆
�(1� x) +

�(✏+ 1

2
)e✏�E

p
⇡

µ2✏

p2✏z

1� ✏

✏IR(1� 2✏)

⇥


|x|�1�2✏

⇣
1 + x+

x

2
(x� 1 + 2✏)

⌘
� |1� x|�1�2✏

✓
x+

1

2
(1� x)2

◆
+ I3(x)

��
, (47)

where

I3(x) = ✓(x� 1)
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After some algebra one can confirm that the bare quasi-PDF satisfies local vector current conservation, withR
dx q̃(1)(x, pz, ✏) = 0. To verify this result one must carefully separate out 1/✏UV factors arising from requiring

✏ > 0 to obtain convergence at x = ±1, and 1/✏IR factors that arise from requiring ✏ < 0 to obtain convergence at
x = 1.

An alternate method of obtaining the quasi-PDF is to directly calculate it from the Feynman diagrams by first
Fourier transforming z into xpz. As a result, the factors (e�ipzz

�e�ikzz) are transformed into [�(pz�xpz)��(kz�xpz)],
and all the loop integrals reduce to (d � 1)-dimensional ones. This is the procedure for the matching calculations of
the quasi-PDF used in Refs. [24, 26], and is distinct from doing the Fourier transformation after fully carrying out
the integrals as in Eqs. (42–47). As a cross-check we have confirmed in App. B that we obtain the exactly same bare
quasi-PDF in Eq. (47) from both procedures.

Now we consider the ✏ expansion to obtain MS renormalized results for the Io↵e-time, pseudo-PDF, and quasi-PDF.
Expanding the Io↵e-time distribution in ✏ we obtain

Q̃(1)(⇣, z2, ✏) = �Q̃(1)(⇣, z2, µ, ✏UV) + Q̃(1)(⇣, z2, µ, ✏IR) +O(✏) (49)

with the MS counterterm and renormalized Io↵e-time distribution given by

�Q̃(1)(⇣, z2, µ, ✏UV) =
↵sCF
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e�i⇣ 3

2
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, (50)
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Here 3F3 is a hypergeometric function and the Fourier transform of
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For the position space PDF we have

Q(1)(⇣, µ, ✏IR) = �
↵sCF
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1

✏IR
h(⇣) . (52)

Next we expand the bare pseudo-PDF from Eq. (45) in ✏ to obtain the MS counterterm and renormalized pseudo-
PDF as P(1)(x, z2, ✏) = �P(1)(x, z2µ2, ✏UV) + P

(1)(x, z2µ2, ✏IR) +O(✏) with
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the bare quasi-PDF,
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After some algebra one can confirm that the bare quasi-PDF satisfies local vector current conservation, withR
dx q̃(1)(x, pz, ✏) = 0. To verify this result one must carefully separate out 1/✏UV factors arising from requiring

✏ > 0 to obtain convergence at x = ±1, and 1/✏IR factors that arise from requiring ✏ < 0 to obtain convergence at
x = 1.
An alternate method of obtaining the quasi-PDF is to directly calculate it from the Feynman diagrams by first

Fourier transforming z into xpz. As a result, the factors (e�ipzz
�e�ikzz) are transformed into [�(pz�xpz)��(kz�xpz)],

and all the loop integrals reduce to (d � 1)-dimensional ones. This is the procedure for the matching calculations of
the quasi-PDF used in Refs. [24, 26], and is distinct from doing the Fourier transformation after fully carrying out
the integrals as in Eqs. (42–47). As a cross-check we have confirmed in App. B that we obtain the exactly same bare
quasi-PDF in Eq. (47) from both procedures.
Now we consider the ✏ expansion to obtain MS renormalized results for the Io↵e-time, pseudo-PDF, and quasi-PDF.

Expanding the Io↵e-time distribution in ✏ we obtain

Q̃(1)(⇣, z2, ✏) = �Q̃(1)(⇣, z2, µ, ✏UV) + Q̃(1)(⇣, z2, µ, ✏IR) +O(✏) (49)

with the MS counterterm and renormalized Io↵e-time distribution given by
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For the position space PDF we have
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Next we expand the bare pseudo-PDF from Eq. (45) in ✏ to obtain the MS counterterm and renormalized pseudo-
PDF as P(1)(x, z2, ✏) = �P(1)(x, z2µ2, ✏UV) + P
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Note that
R
1

0
dxLn(x) = 0.

To define the expansion in the range x 2 [1,1] we
simply map this interval to [0, 1] via t = 1/x. Taking an
arbitrary smooth test function g(x) we have
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g(x) (C5)
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Here ✏ > 0 and the superscript + on the �+ function
indicates that its argument should be positive. Therefore
�+(1/x) has its support at x = +1, not x = �1. Since
g is arbitrary we can identify
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Combining the above results and denoting which 1/✏
poles are UV or IR divergences we have
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where we have defined the distributions
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and
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Note that Eq. (C7) is consistent with the expected result
that
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Note that
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To define the expansion in the range x 2 [1,1] we
simply map this interval to [0, 1] via t = 1/x. Taking an
arbitrary smooth test function g(x) we have
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Here ✏ > 0 and the superscript + on the �+ function
indicates that its argument should be positive. Therefore
�+(1/x) has its support at x = +1, not x = �1. Since
g is arbitrary we can identify
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Combining the above results and denoting which 1/✏
poles are UV or IR divergences we have
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Note that Eq. (C7) is consistent with the expected result
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Note that the renormalized MS pseudo-PDF depends explicitly on µ2, and satisfies the relation to the renormalized
MS Io↵e-time distribution given in Eq. (28). It is also interesting to note that having expanded in ✏, local vector
current conservation is no longer satisfied by the limit of the renormalized MS pseudo-PDF, since

lim
z!0

Z
dxP(1)(x, z2µ2, ✏IR) ' (3↵sCF /4⇡) lim

z!0

ln(z2µ2) (54)

gives a divergent result. The same divergence is present in the one-loop MS renormalized Io↵e-time distribution in
Eq. (50).

For the quasi-PDF there are two methods that we can consider for the renormalized calculation, either expanding
the bare result in Eq. (47) and renormalizing in (x, pz) space, or following our preferred definition in Eq. (24) and
Fourier transforming the renormalized Io↵e-time distribution in Eq. (50). Although these two approaches will lead to
the same final result for C for practical applications, there is a subtle di↵erence that we will explain.

First consider the renormalization of the quasi-PDF done in (x, pz) space. Expanding Eq. (47) in ✏, and writing
q̃(1)(x, pz, ✏) = �q̃(1)(x, µ/|pz|, ✏UV)+ q̃(1)(x, µ/|pz|, ✏IR)+O(✏) allows us to identify the MS counterterm and renormal-
ized quasi-PDF as
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The details of working out the ✏ expansion of Eq. (47) are provided in App. C, including definitions of the plus
functions and �-functions at x0 = ±1 that appear in the result quoted here. The MS quasi-PDF obtained in Eq. (55)
still satisfies vector current conservation

Z
dx q̃(1)(x, µ/|pz|, ✏IR) = 0 . (56)

This is obviously the case for the plus function terms which individually integrate to zero, and is also true for the
combination of �-functions which appears in Eq. (55).

The renormalized MS quasi-PDF in Eq. (55) di↵ers slightly from that obtained using our definition in Eq. (24).
Using Eq. (24) and the renormalized Io↵e-time distribution in Eq. (50) we instead obtain
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Note that the renormalized MS pseudo-PDF depends explicitly on µ2, and satisfies the relation to the renormalized
MS Io↵e-time distribution given in Eq. (28). It is also interesting to note that having expanded in ✏, local vector
current conservation is no longer satisfied by the limit of the renormalized MS pseudo-PDF, since

lim
z!0

Z
dxP(1)(x, z2µ2, ✏IR) ' (3↵sCF /4⇡) lim

z!0

ln(z2µ2) (54)

gives a divergent result. The same divergence is present in the one-loop MS renormalized Io↵e-time distribution in
Eq. (50).

For the quasi-PDF there are two methods that we can consider for the renormalized calculation, either expanding
the bare result in Eq. (47) and renormalizing in (x, pz) space, or following our preferred definition in Eq. (24) and
Fourier transforming the renormalized Io↵e-time distribution in Eq. (50). Although these two approaches will lead to
the same final result for C for practical applications, there is a subtle di↵erence that we will explain.

First consider the renormalization of the quasi-PDF done in (x, pz) space. Expanding Eq. (47) in ✏, and writing
q̃(1)(x, pz, ✏) = �q̃(1)(x, µ/|pz|, ✏UV)+ q̃(1)(x, µ/|pz|, ✏IR)+O(✏) allows us to identify the MS counterterm and renormal-
ized quasi-PDF as

�q̃(1)(x, µ/|pz|, ✏UV) =
↵sCF

2⇡

3

2✏UV


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q̃(1)(x, µ/|pz|, ✏IR) =
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. (55)

The details of working out the ✏ expansion of Eq. (47) are provided in App. C, including definitions of the plus
functions and �-functions at x0 = ±1 that appear in the result quoted here. The MS quasi-PDF obtained in Eq. (55)
still satisfies vector current conservation

Z
dx q̃(1)(x, µ/|pz|, ✏IR) = 0 . (56)

This is obviously the case for the plus function terms which individually integrate to zero, and is also true for the
combination of �-functions which appears in Eq. (55).

The renormalized MS quasi-PDF in Eq. (55) di↵ers slightly from that obtained using our definition in Eq. (24).
Using Eq. (24) and the renormalized Io↵e-time distribution in Eq. (50) we instead obtain

�q̃0(1)(x, µ/|pz|, ✏UV) =
↵sCF
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3
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�(1� x) , (57)

q̃0(1)(x, µ/|pz|, ✏IR) =
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Ratios 

  Ratio of the quasi-PDF in quark in coordinate space: 

  V.C.C. is satisfied by the ratio: 

  F.T. of the ratio should be similar to the ETMC matching 
coefficient. 

   Can treat ~Q(0, z2, µ2) as additional renormalization constant for 
small |z|: modify both the RI/MOM to MSbar conversion factor 
for the quasi-PDF, and the matching. 
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the bare quasi-PDF,

q̃(1)(x, pz, ✏) =
↵sCF

2⇡

⇢
3

2

✓
1

✏UV
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1

✏IR
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2
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, (47)

where

I3(x) = ✓(x� 1)
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x� 1
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� ✓(x)✓(1� x)
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� �(1� x)⇡ csc(2⇡✏) + ✓(�x)
|x|�1�2✏

x� 1
. (48)

After some algebra one can confirm that the bare quasi-PDF satisfies local vector current conservation, withR
dx q̃(1)(x, pz, ✏) = 0. To verify this result one must carefully separate out 1/✏UV factors arising from requiring

✏ > 0 to obtain convergence at x = ±1, and 1/✏IR factors that arise from requiring ✏ < 0 to obtain convergence at
x = 1.

An alternate method of obtaining the quasi-PDF is to directly calculate it from the Feynman diagrams by first
Fourier transforming z into xpz. As a result, the factors (e�ipzz

�e�ikzz) are transformed into [�(pz�xpz)��(kz�xpz)],
and all the loop integrals reduce to (d � 1)-dimensional ones. This is the procedure for the matching calculations of
the quasi-PDF used in Refs. [24, 26], and is distinct from doing the Fourier transformation after fully carrying out
the integrals as in Eqs. (42–47). As a cross-check we have confirmed in App. B that we obtain the exactly same bare
quasi-PDF in Eq. (47) from both procedures.

Now we consider the ✏ expansion to obtain MS renormalized results for the Io↵e-time, pseudo-PDF, and quasi-PDF.
Expanding the Io↵e-time distribution in ✏ we obtain

Q̃(1)(⇣, z2, ✏) = �Q̃(1)(⇣, z2, µ, ✏UV) + Q̃(1)(⇣, z2, µ, ✏IR) +O(✏) (49)

with the MS counterterm and renormalized Io↵e-time distribution given by

�Q̃(1)(⇣, z2, µ, ✏UV) =
↵sCF
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, (50)

Q̃(1)(⇣, z2, µ, ✏IR) =
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Here 3F3 is a hypergeometric function and the Fourier transform of
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gives the function
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. (51)

For the position space PDF we have

Q(1)(⇣, µ, ✏IR) = �
↵sCF

2⇡

1

✏IR
h(⇣) . (52)

Next we expand the bare pseudo-PDF from Eq. (45) in ✏ to obtain the MS counterterm and renormalized pseudo-
PDF as P(1)(x, z2, ✏) = �P(1)(x, z2µ2, ✏UV) + P

(1)(x, z2µ2, ✏IR) +O(✏) with
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	ζ = zpz

		 
!Q(0,z2 ,µ)= α SCF

2π ⋅ 32ln
µ2z2e2γ E

4 +1
⎛

⎝
⎜

⎞

⎠
⎟

		 
lim
z→0

!Q(zpz ,z2 ,µ ,ε IR )
!Q(0,z2 ,µ ,ε IR )

~ zn ln(z2)→0

A. Radyushkin, 2017;Zhang, Chen and Monahan, 2018; 
 Izubuchi, Ji, Jin, Stewart and Y.Z., 2018 


